Return to search

Synthesis of topologically complex molecules

The study of topologically complex molecules is necessary to better understand the knotted architectures that abound within Nature and are vital in the functioning of DNA and proteins. Metal based template strategies have played a key role in the successful synthesis of a number of interwoven structures constructed from small molecule building blocks, however novel methodology is crucial for the expansion of this fascinating field of chemistry. The strategy of linking the ends of a cyclic helicate has been developed within the Leigh group and applied with great success to the synthesis of the first molecular pentafoil knot. This thesis presents the application of this strategy to the high yielding synthesis of a molecular Solomon link. In depth studies of the self-assembly of a pentafoil knot and self-sorting reactions are also presented, offering insights into the nontrivial self-assembly of these topologically complex molecules.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:699875
Date January 2013
CreatorsCampbell, Christopher James
ContributorsLeigh, David ; Cockroft, Scott
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/17071

Page generated in 0.0025 seconds