Return to search

Roles of Primary Cilia in the Oligodendrocyte Lineage

Primary cilia are nonmotile, hair-shaped organelles that extend from the basal body in the centrosome. The present study is the first investigation of this organelle in the oligodendrocyte lineage in vivo. I used immunohistochemical approaches in normal and cilia-deficient mutant mice to study cilia in relation to oligodendrogenesis and myelination. Primary cilia immunoreactive for Arl13b and ACIII were commonly present in NG2+ oligodendrocyte progenitor cells (OPCs), in which cilia-associated pathways control proliferation, differentiation, and migration. The loss of primary cilia is generally associated with enhanced Wnt/β-catenin signaling, and Wnt/β-catenin signaling has been shown to promote myelin gene expression. I examined whether the lack of cilia in the oligodendrocyte lineage is associated with elevated Wnt/β-catenin activity. I found that absence of a primary cilium was associated with with higher levels of TCF3, and with β-galactosidase in Axin2-lacZ Wnt reporter mice. This evidence supports the proposal that cilia loss in oligodendrocytes leads to enhanced Wnt/β-catenin activity, which promotes myelination. Cilia are dependent on the centrosome, which assembles microtubules for the cilium, the cytoskeleton, and the mitotic spindle. Centrosomes are the organizing center for microtubule assembly in OPCs, but this function is decentralized in oligodendrocytes. I found that the intensity of centrosomal pericentrin was reduced in oligodendrocytes relative to OPCs, and γ-tubulin was evident in centrosomes of OPCs but not in mature oligodendrocytes. These decreases in centrosomal proteins might contribute to functional differences between OPCs and oligodendrocytes. The importance of cilia in the oligodendrocyte lineage was examined in Tg737orpk mice, which have a hypomorphic IFT88 mutation resulting in decreased cilia numbers and lengths. These mice showed marked, differential decreases in numbers of oligodendrocytes and myelin, yet little or no change in OPC populations. It appears that sufficient cells were available for maturation, but lineage progression was stalled. There were no evident effects of the mutation on Wnt/β-catenin. Factors that might contribute to the abnormalities in the oligodendrocyte lineage of Tg737orpk mice include decreased cilia-dependent Shh mitogenic signaling and dysregulation in cilia-associated pathways such as Notch and Wnt/β-catenin.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1404594
Date12 1900
CreatorsSubedi, Ashok
ContributorsFuchs, Jannon L., Lund, Amie K., Jagadeeswaren, Pudur, Root, Douglas D., Schwark, Harris D.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatviii, 73 pages, Text
RightsPublic, Subedi, Ashok, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0049 seconds