Most empirical work focuses on the estimation of average treatment effects (ATE). In this dissertation, I argue for a different way of thinking about causal inference by estimating individual causal effects (ICEs). I argue that focusing on estimating ICEs allows for a more precise and clear understanding of causal inference, reconciles the difference between what the researcher is interested in and what the researcher estimates, allows the researcher to explore and discover treatment effect heterogeneity, bridges the quantitative-qualitative divide, and allows for easy estimation of any other causal estimand. / Government
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11181234 |
Date | 18 October 2013 |
Creators | Lam, Patrick Kenneth |
Contributors | King, Gary |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0021 seconds