Avoiding cavitation and especially cavitation erosion are tasks, which have to be considered when working with hydraulics. State of the art is the assessment of the risk of erosion by component testing or to completely avoid cavitation by means of CFD. Another reliable method to assess the risk of cavitation erosion is until now not available. This paper deals with this problem and delivers comparative values for a later method development. In a first step the cavitation of a poppet valve, which controls a methanol flow, is visualized. The resulting three cavitation appearances are deeply examined. After that the results of long-term tests at different operation conditions are presented. A poppet surface analysis following each experiment has shown different types of surface attacks. As a result of this work it is shown that both cavitation appearance and surface attack are strongly influenced by the temperature dependent air solubility of the liquid.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29314 |
Date | January 2016 |
Creators | Krahl, Dominik, Weber, Jürgen, Fuchs, Maik |
Contributors | Dresdner Verein zur Förderung der Fluidtechnik e. V. |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Source | 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 1, pp. 333-348 |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa-196933, qucosa:29237 |
Page generated in 0.0019 seconds