Return to search

Numerical Modeling of Cavitation During Shock Droplet Interaction

This effort explores the complex phenomena of cavitation inside different liquid geometry interacting with a planar shock wave by employing the use of Computational Fluids Dynamics (CFD) modeling. The simulation is an unsteady multiphase simulation utilizing a finite volume commercial code known as STAR-CCM+ . Two primary cavitation models were employed: the Schnerr- Sauer model and the Full Rayleigh-Plesset model. The initial investigation involves validating the numerical simulations against available experimental data. Subsequently, a comprehensive parameter study was conducted, examining the effects of varying Mach numbers, liquid geometries, and seed densities on the cavitation phenomenon. Results indicated that cavitation occurs within the liquid geometry due to the low-pressure spike, leading to significant pressure oscillations inside the liquid geometry.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2023-1501
Date01 January 2024
CreatorsNguyen, Khanh Chi
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Thesis and Dissertation 2023-2024

Page generated in 0.0021 seconds