Return to search

An Experimental Study of Formation of Circulation Patterns in Laminar Unsteady Driven Cavity Flows Using Particle Image Velocimeter (PIV) Techniques

Abstract
An experimental study is conducted to determine the velocity fields, from development to steady state, in a square enclosure due to movement of a constant velocity lid using Particle Image Velocitmetry (PIV). Experiments were conducted with water, seeded with hollow glass sphere particles 10 microns in diameter, at three different lid velocities leading to Reynolds numbers in the high laminar to transitional range. Driven Cavity Flow is a classic fluid dynamics case often used for benchmarking of computational codes. Previous work has primarily focused on improving computational codes, experimental work is lacking and focused on obtaining steady state readings. The test cavity is 1 inch (25.4mm) high by 1 inch (25.4 mm) wide leading to an aspect ratio of 1.0. The depth is taken to be 5 (127mm) inches to reduce the three dimensional effects. Readings are taken from development to steady state allowing for a full spectrum of flow characteristics. PIV technique is successful in capturing the development of driven cavity flow. Circulation is shown to increase strength with time and Reynolds number. PIV capture and processing settings are determined.
Keywords: Driven Cavity Flow, Particle Image Velocimeter (PIV)

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-2404
Date17 December 2011
CreatorsFarkas, Jon
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0022 seconds