Cul3 forms E3 ubiquitin ligase complexes that regulate a variety of cellular processes. This dissertation describes Cul3's role in several of these pathways and provides new mechanistic details regarding the role of Cul3 in eukaryotic cells. Cyclin E is an example of a protein that is regulated in a Cul3-dependent manner. Cyclin E is a cell cycle regulator that controls the beginning of DNA replication in mammalian cells. Increased levels of cyclin E are found in some cancers, in addition, proteolytic removal of the cyclin E N-terminus occurs in some cancers and is associated with tumorigenesis. Cyclin E levels are tightly regulated and controlled in part through ubiquitin-mediated degradation initiated by one of two E3 ligase complexes, Cul1 and Cul3. Cul1 mediated degradation of cyclin E is triggered by cyclin E phosphorylation, however the mechanism Cul3 uses to ubiquitinate cyclin E is poorly understood. In order to gain a better understanding of how Cul3 mediates cyclin E destruction we identified the degron on cyclin E that is important in Cul3 dependent degradation. In addition, we show this degron is lacking in LMW cyclin E (found in abundance in breast cancer), providing a novel mechanism for how these cyclin E modifications result in increased cyclin E levels by avoiding the Cul3 degradation pathway.
Identifer | oai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-4791 |
Date | 02 August 2017 |
Creators | Davidge, Brittney Marie |
Publisher | PDXScholar |
Source Sets | Portland State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations and Theses |
Page generated in 0.0099 seconds