Return to search

Advanced Algorithms for Cancer Cell Detection and Tracking

Microscopy image processing is critical for precision oncology and immunotherapy, two approaches in cancer treatment often combined to enhance patient outcomes. Numerous scientists have studied the effects of drugs on the immune system and tumors. To quantify the impact of various drugs on different immune and cancer cell types, medical researchers conduct ex vivo assays. In these assays, patient-derived live cells are placed in an artificial microenvironment where drug responses are monitored over time. Brightfield microscopy captures one image every half hour of numerous patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to six days. These images are used to quantify the response of different cells to various drugs. However, tracking thousands of cells in low-resolution, low-frame-rate images remains challenging. Existing digital image processing algorithms require high-resolution images involving very few cells from homogeneous cell line populations. In this work, we propose three novel frameworks to track cancer cells, capture their behavior, and quantify cell viability to inform clinical decisions in a high-throughput manner.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2023-1355
Date01 January 2024
CreatorsJiang, Qibing
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Thesis and Dissertation 2023-2024
RightsIn copyright

Page generated in 0.0162 seconds