Precise regulation of heterotrimeric G-protein signaling is important for maintaining proper cardiovascular system function. Indeed, G-protein signaling is frequently upregulated during cardiovascular disease suggesting that identifying mechanisms for inhibiting G-protein signaling may be an effective therapeutic strategy for the treatment and prevention of disease. The work presented in this thesis is directed at two RGS proteins, RGS2 and RGS5, the two highest expressing RGS proteins in VSMCs. Despite the large number of studies published on them, there is still much to be learned about the specific G-protein pathways that each RGS protein controls. Using genetic and molecular models, we set out to identify novel regulatory pathways controlling RGS2 and RGS5 function. We hypothesize that characterizing the determinants and regulation of RGS protein function will provide a better understanding of the signaling that occurs within VSMCs under both physiologic and pathophysiologic conditions.
Our work presented in the first three studies of this thesis, describes novel regulatory pathways that are involved in regulating RGS2 protein function. We describe the production of RGS2 protein isoforms that are the result of alternative translational start site usage. Interestingly, the expression pattern of these proteins is controlled by the signaling status of the cell. In the second two studies, we identify a functional consequence of RGS2-interaction with the plasma membrane. We show that this is dependent on the interaction between the amphipathic α-helix and anionic phospholipids present in the plasma membrane. We further show that disruptions in this interaction, as occurs in the human population, can lead to reduced RGS2 function and thus potentially hypertension.
Finally, our last study focuses on the function and regulation of RGS5, the single highest expressing RGS protein in VSMCs. We show that the regulation of RGS5 is dependent, similar to other VSMC-specific genes, on the activity of SRF and myocardin. However, interestingly, RGS5 expression is further controlled by the extent of DNA methylation that occurs in its proximal promoter. We show that this is an important regulator of RGS5 expression both in development as well as during disease, specifically in-stent restenosis.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/19273 |
Date | 03 March 2010 |
Creators | Gu, Steven |
Contributors | Heximer, Scott P. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds