Return to search

Protein-carbohydrate recognition

Protein-carbohydrate recognition is an important target for inhibitor development. Improved inhibitor design requires a fundamental molecular basis of these interactions. This thesis describes the preliminary structural studies on three carbohydrate processing enzymes, UDP-galactopyranose mutase, alpha-D-glucose-1-phosphate thymidylyltransferase and TDP-glucose 4,6-dehydratase. These enzymes are found in important human pathogens such as Mycobacterium tuberculosis and Salmonella typhimurium. The major focus of the thesis has been on UDP-galactopyranose mutase, the enzyme responsible for catalysing synthesis of the thermodynamically unfavourable 5 membered ring form of galactose, UDP-galactofuranose from the thermodynamically favoured 6 membered ring form, UDP-galactopyranose. UDP-galactofuranose plays a key role in mycobacterial cell walls. This thesis also describes work with concanavalin A. This legume lectin is an invaluable model for the study of protein-carbohydrate interactions. Two concanavalin A complexes are discussed. Both structures clear up misunderstandings in the literature and provide an insight into designing enzyme inhibitors.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:750313
Date January 1999
CreatorsMcMahon, Stephen Andrew
ContributorsNaismith, James H.
PublisherUniversity of St Andrews
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10023/14045

Page generated in 0.0025 seconds