Return to search

Determining Lineage Fate, Survival and Proliferation of Differentiating Thymocytes: Interplay between Notch, TCR, PI3K and MAPK Pathways

A common bipotent thymocyte precursor gives rise to both lineages of T cells, αβ and γδ. This thesis addresses how the interplay between intrinsic T cell receptor (TCR) signals and cell extrinsic signals provided by Notch and TCR ligands help to assign and support a final lineage fate decision. Emerging data supports a model in which differential TCR signaling capacity plays an instructional role in specifying lineage fate, particularly through induction of the ERK - early growth response gene (Egr) - inhibitor of DNA binding 3 (Id3) pathway. In particular, Id3 expression serves to regulate adoption of the γδ fate. Moreover, Id3 is both necessary and sufficient to enable γδ-lineage cells to differentiate independently of Notch signaling and become competent interferon (IFN)-γ-producing effectors. These findings identify Id3 as a central player that controls both adoption of the γδ fate and their maturation in the thymus. While loss of Notch signaling in γδTCR-expressing CD4-CD8- (DN)3 cells does not affect development, Notch signals are critical for pre-TCR-bearing cells to transition to the CD4+CD8+ (DP) stage of αβ T cell development. Notch signals affect the activation of the PI3K/Akt pathway, which is required for pTα/TCRβ (pre-TCR)-induced survival, differentiation and proliferation of developing αβ-lineage thymocytes. Here, I identify the key molecular players responsible for the interaction between the Notch and PI3K pathways at this critical developmental stage. Notch induction of Hes1 expression is necessary to repress the expression of the PI3K/Akt pathway inhibitor, PTEN, which in turn facilitates pre-TCR-induced differentiation. c-Myc, another critical target of Notch, is required for proliferation during β-selection. Lastly, I find that the majority of DN3 cells expressing both pre-TCR and γδTCR follow the signal strength model for lineage development, and commit and mature along the γδ-lineage. However, manipulation of signal strength, through γδTCR ligand availability or Id3 expression, can skew this development outcome. Taken together, the results from this thesis provide a detailed examination of the molecular mechanisms that are instrumental in determining lineage fate, survival, and proliferation of differentiating thymocytes. Central to these outcomes is the interplay between the Notch, TCR, PI3K, and MAPK signaling pathways.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/35084
Date04 March 2013
CreatorsWong, Gladys
ContributorsZuniga-Pflucker, Juan Carlos
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds