Circulating tumor cells (CTCs) are the cells that are shed from a primary tumor into the vasculature and circulate in the bloodstream. CTCs may trigger cancer metastasis, which leads to most cancer-related deaths. CTCs are widely studied due to their value in cancer diagnosis, prognosis, and oncology studies. The major challenges with CTCs lie in their extremely low concentration in blood, thus requiring an effective enriching system to enable downstream analyses. The immunomagnetic assay has proved to be a promising CTC detection tool with high sensitivity and throughput. Key factors related to the immunomagnetic assay include the capture rate, which indicates the sensitivity, and distributions of target cells after capture, which impact the cell integrity and other biological properties. In this dissertation, we build a sedimentation model, a partial viscosity model, and a cell-tracking model to address the principle of the immunomagnetic cell separation. We examine the channel orientations and determine the favorable inverted condition. In addition, we develop a micromagnet approach to modulate the in-channel magnetic field toward enhanced cell detection and distribution. Through numerical studies, we calculate the magnetic field generated by the thin-film micromagnets, determine its effective ranges, and demonstrate its value in optimizing cell distribution. In the experimental demonstration, we present two types of micromagnets based on e-beam Ni deposition and inkjet printing technology, respectively. In the screening experiments, the Ni micromagnet integrated system achieves over 97% capture rate. It shows a 14% increase in capture rate, and a 14% improvement in distribution uniformity compared with plain slides. We also successfully isolate CTCs from metastatic cancer patients with the micromagnet assay. The inkjet-printed patterns yield a similarly high capture rate of 103%. With the pixel permanent magnet array, the inkjet patterns further increase the distribution uniformity for 20%. The proposed models lay the theoretical foundations for future modification of the immunomagnetic assay, and the micromagnet-integrated system provides a promising tool for translational applications in cancer diagnose and clinical cancer management. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/31287 |
Date | 10 September 2015 |
Creators | Chen, Peng, active 21st century |
Contributors | Zhang, Xiaojing, Ph. D., Yeh, Tim H. C. |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0017 seconds