<p>Hydrocephalus is a neurological disorder characterised by the pathological accumulation of cerebrospinal fluid (CSF) within the brain ventricles. Surgical interventions, including shunt placement, remain the gold standard treatment option for this life-threatening condition, despite these often requiring further revision surgeries. Unfortunately, there is currently no effective, pharmaceutical therapeutic agent available for the treatment of hydrocephalus. CSF is primarily produced by the choroid plexus (CP), a specialized, branched structure found in the ventricles of the brain. The CP comprises a high resistance epithelial monolayer surrounding a fenestrated capillary network, forming the blood-CSF barrier (BCSFB). The choroid plexus epithelium (CPe) critically modulates CSF production by regulating ion and water transport from the blood into the intraventricular space. This process is thought to be controlled by a host of intracellular mediators, as well as transporter proteins present on either the apical or basolateral membrane of the CPe. Though many of these proteins have been identified in the native tissue, exactly how they interact and modulate signal cascades to mediate CSF secretion remains less clear.</p>
<p><br></p>
<p>Transient potential receptor vanilloid 4 (TRPV4) is a non-selective cation channel that can be activated by a range of stimuli and is expressed in the CP. TRPV4 has been implicated in the regulation of CSF production through stimulating ion flux across the CPe. In a continuous CP cell line, activation of TRPV4, through the addition of a TRPV4 specific agonist GSK1016790A, stimulated a change in net transepithelial ion flux and increase in conductance. In order to develop a pharmaceutical therapeutic for the treatment of hydrocephalus, we must first understand the mechanism of CSF secretion in health and disease. Therefore, a representative <em>in vitro</em> model is critical to elucidate the signaling pathways orchestrating CSF production in the CP.</p>
<p><br></p>
<p>This research aims to characterize an <em>in vitro</em> culture model that can be utilized to study both the BCSFB and CSF production, to investigate and identify additional transporters, ion channels and intracellular mediators involved in TRPV4-mediated signaling in the CPe, primarily through a technique called Ussing-style electrophysiology which considers electrogenic ion flux across a monolayer. These studies implicated several potential modulators, specifically phospholipase C (PLC), phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), intermediate conductance K+ channel (IK), transmembrane member 16A (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR) and protein kinase A (PKA), in TRPV4-mediated ion flux.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/19653093 |
Date | 12 July 2022 |
Creators | Louise Susannah Hulme (12456711) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/Investigating_TRPV4_Signaling_in_Choroid_Plexus_Culture_Models/19653093 |
Page generated in 0.0124 seconds