abstract: It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be linked with dysfunctional complexes in the mitochondrial respiratory chain, increased oxidative stress, and potential cell death. Increased understanding of the pathophysiology of this disease has enabled the development of various therapeutic strategies aimed at restoring mitochondrial respiration. This thesis contains an analysis of the biological activity of several classes of antioxidants against oxidative stress induced by diethyl maleate in Friedreich's Ataxia lymphocytes and CEM leukemia cells. Analogues of vitamin E α-tocopherol have been shown to protect cells under oxidative stress. However, these same analogues show various levels of inhibition towards the electron transport chain complex I. Bicyclic pyridinols containing a ten carbon substituent provided favorable cytoprotection. N-hydroxy-4-pyridone compounds were observed to provide little protection. Similarly, analogues of CoQ10 in the form of pyridinol and pyrimidinol compounds also preserved cell viability at low concentrations. / Dissertation/Thesis / M.S. Biochemistry 2012
Identifer | oai:union.ndltd.org:asu.edu/item:15795 |
Date | January 2012 |
Contributors | Jaruvangsanti, Jennifer (Author), Hecht, Sidney (Advisor), Woodbury, Neal (Committee member), Skibo, Edward (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 63 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0019 seconds