Syncytin-1 is an endogenous retroviral envelope glycoprotein specifically expressed in human placenta, where the protein was adopted for its physiological function. After interaction with specific receptors, transmembrane proteins ASCT1 and ASCT2, Syncytin-1 initiates cell-cell fusion leading to formation of multinucleated syncytiotrophoblast, which is essential for feto-maternal nutrients exchange. In this diploma thesis a new cell-cell fusion quantification assay was implemented for characterisation of Syncytin-1 fusion determinants. The assay uses Syncytin-1 and ASCT2 expressed separately with fragments of luciferase in heterologous cell-culture system. The assay enables to specifically quantify cell-cell fusions based on activity of reconstituted luciferase reporter. This study discovered new facts about the role of intracytoplasmic tail of Syncytin-1 in the process of the cell- cell fusion. This specific part of protein contains a tandem motif sensitive to changes in amino acid sequence that led to loss of fusogenic potential of Syncytin-1. It was further confirmed, that the protein Suppressyn works as an inhibitor of cell-cell fusions initiated by Syncytin-1. Suppressyn however does not bind to receptors of Syncytin-1 and the mechanism of its inhibition remains unsolved. Finally, it was demonstrated...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:451331 |
Date | January 2021 |
Creators | Trávníček, Martin |
Contributors | Trejbalová, Kateřina, Zábranská, Helena |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds