The endothelium is among the most mechanically enriched environments in the body. It is exposed to a range of hemodynamic-induced and extracellular forces. Of these extracellular forces, the migration of leukocytes through the endothelium will contribute both to classic immune response and development of certain pathologies. While the path of migration across the endothelium will depend on leukocyte and vascular bed type, recent evidence has suggested that the intercellular mechanical microenvironment and forces are also equally as important to this process. Therefore, we present here a model that mimics specific physiological states of a stagnant hemodynamic flow in which we hypothesize that leukocytes will demonstrate attachment preferences to particular areas of differing intercellular stresses on the endothelial bed. Using a model such as this one, it may be possible to exploit these intercellular stresses when developing macrophage-targeted therapies.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1003 |
Date | 01 January 2020 |
Creators | Aguilar, Cynthia |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations, 2020- |
Page generated in 0.0021 seconds