<p> Celsr1 is an atypical cadherin central to the asymmetric cell-cell complexes that define planar cell polarity (PCP). Previous work has shown that Celsr1 undergoes bulk endocytosis during cell division in the basal layer of the mouse skin. Here, we report the unexpected finding that Celsr1-mediated intercellular complexes remain intact during mitotic internalization, resulting in uptake of Celsr1 and associated PCP components into dividing cells from their neighbors in a process known as trans-endocytosis. Our observations suggest that the bulk of this internalized pool of Celsr1 is targeted for degradation. Furthermore, Celsr1 internalized from neighboring cells carries with it additional core PCP proteins, including the posteriorly-enriched Fzd6 and anteriorly-enriched Vangl2. However surprisingly, Vangl2 originating from the dividing cell is excluded from mitotic endosomes and remains associated with the membrane. Overexpression of Vangl2 in vitro is sufficient to interfere with Celsr1 internalization, and mitotic internalization of Celsr1 within the skin is delayed at anterior cell surfaces. We propose that Vangl2 stabilizes Celsr1 at the membrane and its dissociation from Celsr1 is a prerequisite for Celsr1 turnover. Together our results indicate that mitotic turnover of Celsr1 depends on the displacement of Vangl2 from PCP complexes and results in the non-autonomous turnover of PCP proteins from neighboring cells.</p><p>
Identifer | oai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10745410 |
Date | 10 May 2018 |
Creators | Heck, Bryan William |
Publisher | Princeton University |
Source Sets | ProQuest.com |
Language | English |
Detected Language | English |
Type | thesis |
Page generated in 0.0018 seconds