Return to search

Wiring the adaptive response of mitochondria to metabolic transitions : a Mitofusin-2- dependent proteolytic elimination of OPA1 accompanies cristae and mitochondria-ER contacts remodelling in the postprandial mouse liver

Il est bien accepté dans des modèles en culture que les dynamiques mitochondriales et le remodelage des crêtes régulent le fonctionnement mitochondrial sous diverses conditions de stress, particulièrement l’apoptose et la famine. Malgré la quantité impressionnante de recherche effectuée dans ce domaine, on en connait encore très peu au sujet de l’importance des dynamiques mitochondriales et du remodelage de la structure mitochondriale sous des conditions physiologiques. Dans les années 1960, Hackenbrock a démontré que des mitochondries isolées adoptent des conformations internes distinctes selon l’état métabolique. D’après ses observations, il a prédit que les changements ultrastructurels de la mitochondrie régulent la production fonctionnelle de l’organite. Cependant, il n’est pas évident que ces changements ultrastructuraux suivent bien les changements métaboliques in vivo dans des conditions physiologiques. De plus, le métabolisme hépatique nécessite une adaptation constante de la production bioénergétique et biosynthétique de la mitochondrie suite aux changements de l’état anabolique/catabolique de la cellule hépatique. Toutefois, le fonctionnement de ce processus est encore largement inconnu. Dans cette étude, nous apportons les premières descriptions quantitatives in vivo de la réponse adaptative du réticulum mitochondrial aux transitions métaboliques du foie. Grâce à un modèle hépatique de souris postprandiale et une analyse cryo- microscopie électronique (cryo-EM) quantitative, nous montrons que, 5 heures après un repas, la voie mTORC1 est bloquée, le réseau mitochondrial se fragmente, la densité des crêtes diminue et la capacité respiratoire des mitochondries chute. Ces changements sont accompagnés d’une augmentation parallèle de la longueur des contacts mitochondrie-réticulum endoplasmique (MERCs), qui contrôle les échanges de calcium et de phospholipides entre les deux organites. De plus, ces évènements sont associés à l’expression transitoire de deux fragments C-terminaux (CTFs) inconnus jusqu’à présent provenant de la protéine Optic atrophy-1 (OPA1), une GTPase qui régule les dynamiques des crêtes mitochondriales et des mitochondries. Grâce à un protocole in vitro, nous montrons que ces CTFs proviennent d’un nouveau clivage d’OPA1, appellé clivage-C, qui élimine l’activité d’OPA1 en la coupant. Plus important encore, nous montrons que le clivage-C nécessite la présence de Mitofusin-2 (MFN2), une protéine clé dans la régulation de la fusion mitochondriale et dans la génèse des MERCs, mais pas la présence de l’homologue Mitofusin-1 (MFN1), ce qui confirme le lien entre le remodelage des crêtes et l’assemblage des MERCs. / It is well established in cultured models that mitochondrial dynamics and cristae remodeling regulate mitochondrial function under different stress conditions, such as starvation and apoptosis. Despite the tremendous amount of research in this field, relatively little is known about the significance of mitochondrial dynamics and ultrastructure remodeling under normal physiological conditions in vivo. In the 1960’s, Hackenbrock demonstrated that isolated mitochondria adopt distinct internal conformations under different metabolic states. Based on these observations, he predicted that mitochondrial ultrastructural changes regulate the organelles functional output. However, whether these ultrastructural changes also accompany metabolic transitions in vivo, under physiological conditions, is not known. Further, hepatic metabolism requires mitochondria to adapt their bioenergetic and biosynthetic output to the ever-changing anabolic/catabolic state of the liver cell, but the wiring of this process is still largely elusive. In this study, we provide the first in vivo quantitative description of the adaptive response of the mitochondrial reticulum to hepatic metabolic transitions. Using a postprandial mouse liver model and quantitative cryo-EM analysis we show that at 5 hours after feeding the mTORC1 signaling is blocked, the mitochondria network fragments, the cristae density decreases and the mitochondrial respiratory capacity drops. These changes are accompanied with a parallel increase in the mitochondria-ER contact (MERCs) lengths, which control calcium and phospholipids fluxes between the two organelles. Further, these events are associated with the transient expression of two previously unidentified C-terminal fragments (CTFs) of Optic atrophy-1 (OPA1), a mitochondrial GTPase that regulates cristae and mitochondrial dynamics. Using an in vitro assay, we show that these CTFs originate from a novel OPA1 processing, termed C-cleavage that eliminates OPA1 activity by breaking off the GTPase. Importantly, we show that C-cleavage requires the presence of Mitofusin-2 (MFN2), a key regulator of mitochondria fusion and MERCs biogenesis, but not that of its homolog Mitofusin-1 (MFN1), thereby linking cristae remodeling to MERCs assembly.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/25772
Date23 April 2018
CreatorsSood, Aditi
ContributorsPellegrini, Luca
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xx, 153 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0027 seconds