Return to search

La physiologie des cellules souches dans le cerveau adulte

Les cellules souches neurales (CSNs) persistent dans la zone sous ventriculaire dans le cerveau adulte. Elles transitent d’un état quiescent à un état prolifératif afin de produire de nouveaux neurones. Les mécanismes régulant cette transition restent cependant méconnus. Les CSNs adultes étant enrichies en gènes calciques, nous avons déterminé si la transition d’un état quiescent vers un état de prolifération était calcium-dépendant. Pour ce faire, nous avons utilisé des mini-endoscopes miniatures pour observer la division cellulaire et sa régulation par la signalisation calcique chez la souris en mouvement libre. Nos données révèlent différents dynamiques calciques et niveaux intracellulaires calciques lors de la division des CSNs. Les expériences pharmacologiques et la technique d’édition génomique CRISPR-Cas9 montrent que les réserves intracellulaires calciques IP3-dépendant et les régulateurs à la protéine G régulent la transition d’un état quiescent vers l’état prolifératif. Nous avons aussi utilisé une approche optogénétique in vivo afin de mimer la dynamique calcique des CSNsquies centes pour maintenir les CSNs dans un état de quiescence et bloquer son activation vers un stade prolifératif. Nos résultats démontrent que les dynamiques calciques et le niveau intracellulaire calcique jouent un rôle important dans l’activation des CSNs. Ensuite, nous avons investigué le microenvironnement des CSNs notamment les vaisseaux sanguins et leur rôle dans la physiologie des CSNs. Les CSNs étendent un long prolongement basal et contactent les vaisseaux sanguins. Le contact direct et la libération de facteurs par les cellules endothéliales influencent le comportement des CSNs. Ici, nous avons utilisé des souris transgéniques pour altérer la communication entre les vaisseaux sanguins et les CSNs. Comme la signalisation Notch joue un rôle clé dans la signalisation des vaisseaux sanguins, nous avons inhibé in vivo la signalisation Notch spécifiquement dans les cellules endothéliales. Nous avons trouvé que l’inhibition de la signalisation Notch dans les cellules endothéliales à des stades précoces (P0) ou à des stades tardifs (P30) augmentait le nombre de CSNs. L’analyse morphologique des vaisseaux sanguins révèle aucune altération quand Notch est inhibé à des stades tardifs (P30). Ces résultats montrent que l’inhibition de la signalisation Notch maintient lesCSNs dans un état de quiescence. / Neural stem cells (NSCs) persist in the subventricular zone of adult brain and transit from the quiescent to the proliferative states to produce new neurons. The mechanisms regulating the transition froma quiescent to a proliferative state remain unclear. Since adult NSCs are enriched in genes associated with Ca2+ signalling pathways, we aimed to determine whether the transition from quiescence to aproliferative state is Ca2+ dependent. Here, we used miniature endoscopes (mini-endoscopes) to monitor NSC division and their regulation by Ca2+ signalling in freely behaving mice. Our data revealeddifferent Ca2+ dynamics and steady-state Ca2+ intracellular levels during NSC division. Pharmacological and in vivo CRISPR-Cas9 gene editing showed that IP3-sensitive intracellular stores and G-proteins regulators regulate the transition from quiescence to proliferation. We further used in vivo optogenetics to mimic Ca2+ dynamics of quiescence state to maintain NSCs in this state and prevent NSCsto transit into proliferative state. Our results demonstrate that Ca2+ dynamics and Ca2+ intracellularlevels play an important role in NSC activation. Next, we investigated NSCs microenvironmentmainly blood vessel and their role in their physiology. The NSCs contact the blood vessels by extending their basal processes. Direct cell-cell contact and the release of factors such as VEGF (vascularendothelial growth factor) by endothelial cells (EC) influence the NSC behaviour. As Notch pathwayis a key player in vasculature signalling, we inhibit in vivo the Notch signalling specifically in EC.We found that inhibition of Notch signalling in EC at early stage (P0) or later stage (P30) increasesNSC number. Morphological analysis of blood vessel reveals no alteration when Notch signalling isinhibited at later stages (P30). These finding showed that inhibition of Notch signalling in EC maintains NSC in quiescence state.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/68740
Date06 May 2024
CreatorsGengatharan, Archana
ContributorsSaghatelyan, Armen
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (vi, 164 pages), application/pdf, application/zip, text/plain
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0029 seconds