Le rein est un organe considéré comme statique, montrant une capacité régénérative très limitée. Les cellules épithéliales du glomérule, appelées podocytes, sont des cellules hautement différenciées qui possèdent des extensions cytoplasmiques indispensables à leur fonction de filtration du sang. Ces cellules sont particulièrement impactées dans les pathologies rénales chroniques, et il apparaît primordial de développer des stratégies thérapeutiques permettant de restaurer leur fonction. Une des approches thérapeutiques qui semble des plus prometteuses consiste en le remplacement des cellules lésées par des cellules fonctionnelles. Dans cette approche de médecine régénérative, les capacités endogènes de régénération des organes sont exploitées et stimulées afin de permettre un rétablissement des tissus constituant les organes. Bien que les podocytes montrent un potentiel de prolifération et de régénération limité, un moyen unique de stimuler ces cellules consiste en la surexpression de la sous-unité protéique TERT de la télomérase. En effet, la surexpression transitoire de TERT dans le rein adulte induit la dédifférenciation et la prolifération des podocytes, suivi par la régénération de ces cellules. L’objectif de mon travail de thèse était d’identifier les voies de signalisation moléculaires ciblées par TERT lors de la reprogrammation des podocytes en cellules dédifférenciées et prolifératives. Le travail réalisé a permis de mettre en évidence les facteurs moléculaires impliqués dans l’initiation de ce processus ainsi que les effecteurs de la reprogrammation ciblés par TERT. De plus, l’analyse des voies de signalisation dérégulées par TERT montre que l’interaction et le remodelage de la matrice extracellulaire représentent des événements très précoces lors de la reprogrammation. Un autre objectif de ma thèse consistait en l’élucidation des mécanismes cellulaires mis en œuvre lors de la régénération des podocytes suite à la surexpression transitoire de TERT. Aussi, les résultats obtenus grâce à l’emploie d’une approche non biaisée de traçage cellulaire a révélé la présence de cellules progénitrices dans le néphron du rein adulte capables de s’amplifier de manière clonale afin de régénérer les podocytes de manière efficace et rapide. Ces résultats présentent un mécanisme cellulaire encore jamais appréhendé, menant à la régénération efficace des podocytes dans le rein des mammifères adultes. Ces données représentent une véritable percée des connaissances au regard de l’existence et de la fonction des progénitures rénaux, ouvrant la voie à des stratégies thérapeutiques permettant d’améliorer la régénération cellulaire de patients souffrant de maladies rénales chroniques. / In mammals, the kidney is considered a static organ with a limited regenerative capacity. Glomerular epithelial cells, named podocytes, are highly differentiated cells harboring cytoplasmic extensions essential for their function of blood filtration. These cells appear to be the weak link in chronic kidney diseases, rising up the necessity to develop therapeutic strategies to restore their function. One promising therapeutic approach consist in the replacement of impaired cells with fully functional cells. The aim of this regenerative medicine approach is to stimulate the endogenous regenerative capacity to reestablish the functionality of tissues within the organ. Although podocytes display a limited regenerative capacity, transient overexpression of the telomerase protein component TERT appears to be an efficient way to stimulate this capacity in vivo. Indeed, TERT exhibits potent effects on kidney podocytes in steady state conditions resulting in acute cell cycle entry and loss of differentiation. Such reprogramming of kidney podocytes is followed by replenishment of those cells by functional podocytes upon TERT withdrawal. TERT effects on kidney podocytes are independent of its role in telomere synthesis, and rather rely on its ability to modulate signaling pathways. My thesis objective was to identify the molecular mechanisms targeted by TERT non-canonical activity upon initiation and progression of podocyte reprogramming. Analysis of the molecular signaling modulated by TERT show that interaction and remodeling of the extracellular matrix represent early events of the reprogramming process. Those results highlighting TERTtarget genes and pathways upon in vivo cellular change of fate provide precious knowledge for unprecedented therapeutic strategies that aim to target TERT non-canonical activity in kidney cancers and other epithelial cancers more broadly. The second objective of my thesis was to elucidate the cellular mechanisms that support podocytes regeneration upon transient overexpression of TERT. Using podocyte lineage tracing approaches, we found that renewed podocytes observed following a TERT pulse are not derived from initially present podocytes. Using an unbiased lineage tracing approach, we further found that clonal amplification of progenitor cells is the source of podocyte replenishment in this system. Those results unveil a cellular mechanism that have never been apprehended previously, which activation lead to efficient podocyte regeneration in the adult mammalian kidney. Those data represent a real breakthrough in knowledge regarding kidney progenitor cells existence and function, and have profound implications for the development of therapeutic strategies that aim to maintain/enhance regeneration in patients with kidney diseases and in the elderly.
Identifer | oai:union.ndltd.org:theses.fr/2018AZUR4211 |
Date | 10 December 2018 |
Creators | Montandon, Margo |
Contributors | Côte d'Azur, Shkreli, Marina |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0046 seconds