Dissertation submitted in partial fulfilment of the requirements for the degree MTech Degree in Civil Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology / Self-compacting concrete is very sensitive to variation in cement properties and to the interaction between cement paste and additives such as superplasticisers. The assessment of these interactions can be done rheologically but there is as yet no consensus on how to evaluate the rheological properties (yield stress and viscosity) of cementitious materials. In addition, there is no clear understanding of the dependency of these rheological properties on early hydration, evaluations which are recommended to be done at paste scale.
The evolution of rheological parameters in the early stage of hydration, of four CEM I 52.5N cements manufactured at different factories in South Africa, and their interaction with two different commercial superplasticisers (SPs) were investigated using three different rheometric techniques: conventional flow curve from hysteresis loops, amplitude sweep in oscillation mode and construction of flow curve.
Amplitude sweep, time sweep, viscosity-time sweep as well as thixotropy tests were conducted to investigate the effect of hydration and the rate of rebuilding of each cement in the presence and absence of SP. The experiments were done on a MCR51 rheometer with roughened parallel plates under controlled temperatures and relative humidity. / PPC Cement
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:cput/oai:localhost:20.500.11838/2169 |
Date | January 2015 |
Creators | Mbasha Migabo, Willy |
Contributors | Haldenwang, Rainer, Masalova, Irina |
Publisher | Cape Peninsula University of Technology |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/za/ |
Page generated in 0.0024 seconds