Return to search

Advances in Natural Fiber Cement Composites: A Material for the Sustainable Construction Industry

The need for economical, sustainable, safe, and secure shelter is an inherent global problem and numerous challenges remain in order to produce environmentally friendly construction products which are structurally safe and durable. The use of sisal, a natural fiber with enhanced mechanical performance, as reinforcement in a cement based matrix has shown to be a promising opportunity. This work addresses the development and advances of strain hardening cement composites using sisal fiber as reinforcement. Sisal fibers were used as a fabric to reinforce a multi-layer cementitious composite with a low content of Portland cement. Monotonic direct tensile tests were performed in the composites. The crack spacing during tension was measured by image analysis and correlated to strain. Local and global deformation was addressed. To demonstrate the high performance of the developed composite in long term applications, its resistance to tensile fatigue cycles was investigated. The composites were subjected to tensile fatigue load with maximum stresses ranging from 4 to 9.6 MPa at a frequency of 2 Hz. The composites did not fatigue below a maximum fatigue level of 6 MPa up to 106 cycles. Monotonic tensile testing was performed for composites that survived 106 cycles to determine its residual strength.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:23776
Date03 June 2009
CreatorsSilva, Flávio de Andrade, Mobasher, Barzin, Filho, Romildo Dias de Toledo
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:article, info:eu-repo/semantics/article, doc-type:Text
SourceTextilbeton – Theorie und Praxis : Tagungsband zum 4. Kolloquium zu Textilbewehrten Tragwerken (CTRS4) und zur 1. Anwendertagung, Dresden, 3.6. - 5.6.2009. - Dresden, 2009. - S. 377 - 388
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds