Pressure is mounting in the construction industry to adopt more environmentally sustainable methods to reduce CO2 emissions. Portland cement (PC) often constitutes to more than two-thirds of the embodied energy of concrete, and its production generates 5% of global greenhouse gas emissions. One efficient strategy to reduce the cement content without sacrificing performance is the use of particle packing models (PPM) to mix- proportion concrete mixtures with low cement content, the so-called low cement content (LCC) concrete. If on the one hand LCC was seen to be an effective sustainable alternative to the construction industry, its mechanical behaviour, durability and long-term performance are still under debate and thus further research is needed in the area. In this project, continuous PPM theories were used to mix- design structural concrete mixes presenting distinct mechanical properties (i.e. 25 & 35 MPa) and cement contents. Their performance was evaluated in the fresh and hardened states, and gaps, recommendations, and further needs were highlighted. Results show that the use of PPM enables the development of LCC systems, showing impressive hardened state performance (i.e. higher compressive strength and modulus of elasticity and lower electrical resistivity) and low carbon footprint. However, challenges in the fresh state were faced, which may be potentially solved with the use of chemical admixtures, fillers and/or supplementary cementing materials (SCMs).
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/37590 |
Date | 07 May 2018 |
Creators | Yousuf, Saif |
Contributors | Sanchez, Leandro |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0022 seconds