Bone cement surgery is a new technique widely used in medical field nowadays. In this thesis I analyze 48 bone cement types using their content of 20 elements. My goal is to ?find a method to classify new found bone cement sample into these 48 categories. Here I will use multinomial logistic regression method to see whether it works or not. Due to the lack of observations, I generate enough data by adding white noise in proper scales to the original data again and again, and then I get a data set of over 100 times as many points as the original one. Then I use purposeful variable selection method to pick the covariates I need, rather than stepwise selection. There are 15 covariates left after the selection, and then I use my new data set to fit such a multinomial logistic regression model. The model doesn't perform that good in goodness of ?fit test, but the result is still acceptable, and the diagnostic statistics also indicate a good performance. Combined with clinical experience and prior conditions, this model is helpful in this classification case.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1519 |
Date | 29 April 2018 |
Creators | Wei, Jinglun |
Contributors | Thelge B. Peiris, Advisor, , |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0013 seconds