Return to search

Classification of Bone Cements Using Multinomial Logistic Regression Method

Bone cement surgery is a new technique widely used in medical field nowadays. In this thesis I analyze 48 bone cement types using their content of 20 elements. My goal is to ?find a method to classify new found bone cement sample into these 48 categories. Here I will use multinomial logistic regression method to see whether it works or not. Due to the lack of observations, I generate enough data by adding white noise in proper scales to the original data again and again, and then I get a data set of over 100 times as many points as the original one. Then I use purposeful variable selection method to pick the covariates I need, rather than stepwise selection. There are 15 covariates left after the selection, and then I use my new data set to fit such a multinomial logistic regression model. The model doesn't perform that good in goodness of ?fit test, but the result is still acceptable, and the diagnostic statistics also indicate a good performance. Combined with clinical experience and prior conditions, this model is helpful in this classification case.

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1519
Date29 April 2018
CreatorsWei, Jinglun
ContributorsThelge B. Peiris, Advisor, ,
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.0013 seconds