Return to search

Gradient formation in cemented carbides with 85Ni:15Fe-binder phase / Gradientbildning i hårdmetall med 85Ni:15Fe-bindefas

In today’s inserts used for metal cutting the binder phase consists of cobalt (Co).However, EU’s REACH programme and the U.S’s National Toxicity Programme(NTP) classified Co as toxic/carcinogenic. Therefore, there is a strong need toinvestigate alternative binder phases. This thesis covers sintering and characterisationof cemented carbide with a binder phase consisting of nickel (Ni) and iron (Fe) withthe composition of 85Ni:15Fe. The aim was to study the gradient formation of turninginsert and find sintering processes to achieve a gradient structure with the targetedthickness of 26 microns. Simulations in ThermoCalc provided a suitable composition and a starting point forsintering parameters. The influences of sintering process parameters, such as holdingtime, temperature and counter pressure on the formation of the gradient zone wereinvestigated. Hot isostatic pressing (HIP) sintering was done in order to study thegradient formation as well as to reduce the porosity when needed. Sintered insertswere analysed by light optical microscopy. It was found that there are at least three possible ways to control the formation ofthe gradient: sintering in vacuum with a holding time of 20 min at 1450°C, sintering at1450°C with a counter pressure of 5 mbar nitrogen, and sintering with a counterpressure of 11.5 mbar followed by a double sinter-hip with 55 bar argon atmosphere.However, only the last process fulfilled the microstructure criteria in terms ofporosity and binder phase distribution. It is clear that the formation of gradient zonesin 85Ni:15Fe can be predicted, however calculations and simulations need to beoptimized in order to get more accurate results.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-256503
Date January 2015
CreatorsLarsson, Niklas
PublisherUppsala universitet, Tillämpad materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC Q, 1401-5773 ; 15001

Page generated in 0.0019 seconds