Return to search

Early Age Mechanical Behavior and Stiffness Development of Cemented Paste Backfill with Sand

Rapid delivery of backfill to support underground openings attracted many mines to adopt paste backfilling methods. As a precaution to prevent liquefaction and to improve the mechanical performance of backfills, a small portion of a binder is added to the paste to form the cemented paste backfill (CPB). Recently, adding sand to mine tailings (MT) in CPB mixes has attracted attention since it enhances the flow and mechanical characteristics of the pastefill. This thesis investigates the effects of adding sand to CPB on the undrained mechanical behavior of the mixture (CPBS) under monotonic and cyclic loads. Liquefaction investigations took place at the earliest practically possible age. Beyond this age, the present research focused on characterizing the evolution of stiffness and obtaining the values of the stiffness parameters that could be useful for designing and modeling backfilling systems.
The liquefaction investigation involved monotonic compression and extension triaxial tests. Neither flow nor temporary liquefaction was observed for all cemented and uncemented specimens under monotonic compression, while temporary liquefaction was observed for all specimens under monotonic extension. The addition of binder and sand to MT was found to slightly strengthen the pastefill in compression while weakening it in extension. Under cyclic loading, the addition of sand negatively impacted the cyclic resistance. However, binder was found to be more effective in the presence of sand. All specimens exhibited a cyclic mobility type of response.
The evolution of effective stiffness parameters for two CPB-sand mixtures was monitored in a non-destructive triaxial test for five days. Self-desiccation was found to not be influential on the development of early age stiffness. Moreover, a framework is suggested to predict the undrained stiffness at degrees of saturation representative of the field. The credibility of the proposed test in providing stiffness parameters at representative strain levels of the field was verified.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/31668
Date05 January 2012
CreatorsAbdelaal, Abdullah
ContributorsGrabinsky, Murray, Bawden, William
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds