Yang, Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 222-244). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Awards and Presentations --- p.ii / Abstract in English --- p.iii / Abstract in Chinese --- p.vii / Table of Contents --- p.x / List of Tables --- p.xv / List of Figures --- p.xvii / List of Abbreviations --- p.xx / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Gliomas --- p.1 / Chapter 1.1.1 --- Oligodendroglial tumors (OTs) --- p.3 / Chapter 1.1.2 --- Glioblastoma multiforme (GBM) --- p.3 / Chapter 1.1.3 --- Molecular pathology of gliomas --- p.4 / Chapter 1.1.3.1 --- Genetic alterations in OTs --- p.4 / Chapter 1.1.3.2 --- Prognostic and predictive factors in OTs --- p.7 / Chapter 1.1.3.3 --- Genetic alterations in GBM --- p.8 / Chapter 1.1.3.4 --- Prognostic and predictive factors in GBM --- p.10 / Chapter 1.2 --- microRNA(miRNA) --- p.13 / Chapter 1.2.1 --- miRNA biogenesis and function --- p.13 / Chapter 1.2.2 --- miRNA involvement in cancer --- p.17 / Chapter 1.2.2.1 --- Dysregulation of miRNAs in human malignancies --- p.17 / Chapter 1.2.2.2 --- Function and potential application of miRNAs --- p.17 / Chapter 1.2.3 --- Role of miRNAs in glioma --- p.19 / Chapter 1.2.3.1 --- miRNAs in OTs --- p.19 / Chapter 1.2.3.2 --- miRNAs in GBM --- p.20 / Chapter 1.3 --- miR-137 --- p.30 / Chapter 1.3.1 --- Biology of miR-137 --- p.30 / Chapter 1.3.2 --- Role of miR-137 in carcinogenesis --- p.33 / Chapter 1.3.2.1 --- Deregulation of miR-137 in cancer --- p.33 / Chapter 1.3.2.2 --- Regulation of miR-137 expression in cancer --- p.33 / Chapter 1.3.2.3 --- Biological functions of miR-137 in cancer --- p.37 / Chapter 1.3.3 --- Role of miR-137 in differentiation and neurogenesis --- p.39 / Chapter CHAPTER 2 --- AIMS OF STUDY --- p.43 / Chapter CHARPTER 3 --- MATERIALS AND METHODS --- p.45 / Chapter 3.1 --- Tumor samples --- p.45 / Chapter 3.2 --- Cell lines and culture conditions --- p.48 / Chapter 3.3 --- Fluorescence in situ hybridization (FISH) --- p.49 / Chapter 3.4 --- Cell transfection --- p.52 / Chapter 3.4.1 --- Transfection of oligonucleotides --- p.52 / Chapter 3.4.1.1 --- Oligonucleotide preparation --- p.52 / Chapter 3.4.1.2 --- Optimization of transfection condition --- p.52 / Chapter 3.4.2 --- Cotransfection of plasmids and miRNA mimic --- p.53 / Chapter 3.4.2.1 --- Optimization of transfection condition --- p.53 / Chapter 3.4.2.2 --- Procedure of transfection --- p.54 / Chapter 3.5 --- Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) --- p.55 / Chapter 3.5.1 --- RNA extraction from frozen tissues and cell lines --- p.55 / Chapter 3.5.2 --- qRT-PCR for miR-137 --- p.56 / Chapter 3.5.3 --- qRT-PCR for CSE1L and ERBB4 transcripts --- p.57 / Chapter 3.6 --- 5-aza-2'-deoxycytidine (5-aza-dC) and Trichostatin A (TSA) treatment --- p.61 / Chapter 3.7 --- Western blotting --- p.62 / Chapter 3.7.1 --- Preparation of cell lysate --- p.62 / Chapter 3.7.2 --- Measurement of protein concentration --- p.62 / Chapter 3.7.3 --- Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) --- p.63 / Chapter 3.7.4 --- Electroblotting of proteins --- p.67 / Chapter 3.7.5 --- Immunoblotting --- p.67 / Chapter 3.8 --- Dual-luciferase reporter assay --- p.70 / Chapter 3.8.1 --- Construction of reporter plasmids --- p.70 / Chapter 3.8.1.1 --- Experimental outline --- p.70 / Chapter 3.8.1.2 --- PCR Amplification of MREs --- p.70 / Chapter 3.8.1.3 --- TA cloning --- p.71 / Chapter 3.8.1.4 --- Transformation --- p.72 / Chapter 3.8.1.5 --- Blue/white screening and validation of recombinants --- p.72 / Chapter 3.8.1.6 --- Subcloning of 3'UTR fragments into pMIR-reproter vector --- p.73 / Chapter 3.8.2 --- Site-directed mutagenesis --- p.74 / Chapter 3.8.3 --- Plasmid and miRNA mimic cotransfection --- p.76 / Chapter 3.8.4 --- Determination of luciferase activity --- p.76 / Chapter 3.9 --- Functional assays : --- p.79 / Chapter 3.9.1 --- Cell growth and proliferation assay --- p.79 / Chapter 3.9.1.1 --- "3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay" --- p.79 / Chapter 3.9.1.2 --- Cell counting --- p.80 / Chapter 3.9.1.3 --- 5-Bromo-2'-deoxyuridine (BrdU) incorporation assay --- p.80 / Chapter 3.9.2 --- Apoptosis assay --- p.82 / Chapter 3.9.3 --- Anchorage-independent growth assay --- p.82 / Chapter 3.9.4 --- Wound healing assay --- p.83 / Chapter 3.9.5 --- Matrigel invasion assay --- p.84 / Chapter 3.9.6 --- Cell differentiation assay --- p.85 / Chapter 3.10 --- Immunohistochemical analysis --- p.86 / Chapter 3.10.1 --- H&E staining --- p.86 / Chapter 3.10.2 --- Detection of Ki-67 expression --- p.87 / Chapter 3.10.3 --- Detection of CSE1L expression --- p.87 / Chapter 3.10.4 --- Scoring methods --- p.88 / Chapter 3.11 --- Bioinformatic analysis --- p.90 / Chapter 3.12 --- Statistical analysis --- p.92 / Chapter CHAPTER 4 --- RESULTS --- p.93 / Chapter 4.1 --- Expression of miR-137 in glioma cells and clinical significance --- p.93 / Chapter 4.1.1 --- Description of 36 OT samples --- p.93 / Chapter 4.1.2 --- miR-137 level in oligodendroglial tumors and glioma cells --- p.102 / Chapter 4.1.3 --- "Association of miR-137 expression with clinicopathological features, lp/19q status and Ki-67 expression" --- p.104 / Chapter 4.2 --- miR-137 levels in glioma cells after demethylation treatment --- p.113 / Chapter 4.3 --- Biological effects of miR-137 overexpression in glioma cells --- p.118 / Chapter 4.3.1 --- Cell growth --- p.118 / Chapter 4.3.1.1 --- Cell viability --- p.118 / Chapter 4.3.1.2 --- Cell number --- p.123 / Chapter 4.3.1.3 --- Cell cycle analysis : --- p.127 / Chapter 4.3.2 --- Anchorage-independent cell growth --- p.130 / Chapter 4.3.3 --- Cell apoptosis --- p.134 / Chapter 4.3.4 --- Cell motility --- p.136 / Chapter 4.3.5 --- Cell differentiation : --- p.142 / Chapter 4.4 --- Identification of miR-137 targets --- p.144 / Chapter 4.4.1 --- In silico prediction of potential miR-137 targets --- p.144 / Chapter 4.4.2 --- Experimental validation of miR-137 targets by dual-luciferase reporter assay --- p.147 / Chapter 4.4.3 --- "Expression of miR-137 candidate targets, CSE1L and ERBB4 in glioma cells" --- p.152 / Chapter 4.4.4 --- Effects of miR-137 on CSE1L transcript and protein levels --- p.154 / Chapter 4.5 --- Expression of CSE1L in OTs --- p.156 / Chapter 4.5.1 --- CSE1L expression in OTs by qRT-PCR and IHC --- p.156 / Chapter 4.5.2 --- Correlation of CSE1L expression with clinicopathological features --- p.165 / Chapter 4.6 --- Effects of CSE1L knockdown in glioma cells --- p.168 / Chapter 4.6.1 --- Cell growth --- p.170 / Chapter 4.6.1.1 --- Cell viability --- p.170 / Chapter 4.6.1.2 --- Cell number --- p.173 / Chapter 4.6.1.3 --- Cell cycle analysis --- p.176 / Chapter 4.6.2 --- Anchorage-independent cell growth --- p.179 / Chapter 4.6.3 --- Cell apoptosis --- p.182 / Chapter 4.6.4 --- Cell motility --- p.184 / Chapter CHAPTER 5 --- DISCUSSION --- p.190 / Chapter 5.1 --- Expression of miR-137 transcript level in OTs and glioma cell lines --- p.190 / Chapter 5.2 --- Association of miR-137 expression with OT clinical and molecular parameters --- p.192 / Chapter 5.3 --- Prognostic significance of clinical features and miR-137 expression in OTs --- p.194 / Chapter 5.4 --- Inactivation mechanisms of miR-137 in glioma --- p.196 / Chapter 5.5 --- Biological effects of miR-137 overexpression in glioma cells --- p.198 / Chapter 5.6 --- CSE1L is a novel miR-137 target in glioma --- p.200 / Chapter 5.7 --- Expression of CSE1L in glioma --- p.203 / Chapter 5.8 --- Intracellular distribution of CSElL in OTs --- p.206 / Chapter 5.9 --- Correlation of CSE1L expression with clinicopathological and molecular features in OTs --- p.208 / Chapter 5.10 --- CSE1L mediates effects of miR-137 in glioma cells --- p.210 / Chapter 5.11 --- Biological roles of CSE1L in glioma cells 226}0Ø. --- p.212 / Chapter 5.11.1 --- CSE1L in glioma cell proliferation --- p.212 / Chapter 5.11.2 --- CSE1L in glioma cell apoptosis --- p.213 / Chapter 5.11.3 --- CSE1L in glioma cell invasion --- p.215 / Chapter CHAPTER 6 --- CONCLUSIONS --- p.216 / Chapter CHAPTER 7 --- FUTURE STUDIES --- p.219 / Chapter 7.1 --- Expression Molecular mechanisms for miR-137 inactivation in glioma --- p.219 / Chapter 7.2 --- Identification of more miR-137 targets in glioma --- p.219 / Chapter 7.3 --- Role of miR-137 and CSE1L in drug-induced apoptosis in glioma --- p.220 / Chapter 7.4 --- Deciphering dysregulated and clinical relevant miRNAs in glioma --- p.220 / Chapter 7.5 --- Effects of miR-137 in vivo and the therapeutic potential in glioma treatment --- p.221 / REFERENCES --- p.222
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_327460 |
Date | January 2011 |
Contributors | Yang, Ling., Chinese University of Hong Kong Graduate School. Division of Anatomical and Cellular Pathology. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xxiv, 244 leaves : ill. (some col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0017 seconds