La restauration statistique non-supervisée de signaux admet d'innombrables applications dans les domaines les plus divers comme économie, santé, traitement du signal, ... Un des problèmes de base, qui est au coeur de cette thèse, est d'estimer une séquence cachée (Xn)1:N à partir d'une séquence observée (Yn)1:N. Ces séquences sont considérées comme réalisations, respectivement, des processus (Xn)1:N et (Yn)1:N. Plusieurs techniques ont été développées pour résoudre ce problème. Le modèle parmi le plus répandu pour le traiter est le modèle dit "modèle de Markov caché" (MMC). Plusieurs extensions de ces modèles ont été proposées depuis 2000. Dans les modèles de Markov couples (MMCouples), le couple (X, Y) est markovien, ce qui implique que p(x|y) est également markovienne (alors que p(x) ne l'est plus nécessairement), ce qui permet les mêmes traitements que dans les MMC. Plus récemment (2002) les MMCouples ont été étendus aux "modèles de Markov triplet" (MMT), dans lesquels on introduit un processus auxiliaire U et suppose que le triplet T = (X, U, Y) est markovien. Là encore il est possible, dans un cadre plus général que celui des MMCouples, d'effectuer des traitements avec une complexité raisonnable. L'objectif de cette thèse est de proposer des nouvelles modélisations faisant partie des MMT et d'étudier leur pertinence et leur intérêt. Nous proposons deux types de nouveautés: (i) Lorsque la chaîne cachée est discrète et lorsque le couple (X, Y) n'est pas stationnaire, avec un nombre fini de "sauts" aléatoires dans les paramètres, l'utilisation récente des MMT dans lesquels les sauts sont modélisés par un processus discret U a donné des résultats très convaincants (Lanchantin, 2006). Notre première idée est d'utiliser cette démarche avec un processus U continu, qui modéliserait des non-stationnarités "continues" de(X, Y). Nous proposons des chaînes et des champs triplets et présentons quelques expériences. Les résultats obtenus dans la modélisation de la non-stationnarité continue semblent moins intéressants que dans le cas discret. Cependant, les nouveaux modèles peuvent présenter d'autres intérêts; en particulier, ils semblent plus efficaces que les modèles "chaînes de Markov cachées" classiques lorsque le bruit est corrélé; (ii) Soit un MMT T = (X, U, Y) tel que X et Y sont continu et U est discret fini. Nous sommes en présence du problème de filtrage, ou du lissage, avec des sauts aléatoires. Dans les modélisations classiques le couple caché (X, U) est markovien mais le couple (U, Y) ne l'est pas, ce qui est à l'origine de l'impossibilité des calculs exacts avec une complexité linéaire en temps. Il est alors nécessaire de faire appel à diverses méthodes approximatives, dont celles utilisant le filtrage particulaire sont parmi les plus utilisées. Dans des modèles MMT récents le couple caché (X, U) n'est pas nécessairement markovien, mais le couple (U, Y) l'est, ce qui permet des traitements exacts avec une complexité raisonnable (Pieczynski 2009). Notre deuxième idée est d'étendre ces derniers modèles aux triplets T = (X, U, Y) dans lesquels les couples (U, Y) sont "partiellement" de Markov. Un tel couple (U, Y) n'est pas de Markov mais U est de Markov conditionnellement àY. Nous obtenons un modèle T = (X, U, Y) plus général, qui n'est plus de Markov, dans lequel le filtrage et le lissage exacts sont possibles avec une complexité linéaire en temps. Quelques premières simulations montrent l'intérêt des nouvelles modélisations en lissage en présence des sauts.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00694128 |
Date | 26 April 2011 |
Creators | Ben Mabrouk, Mohamed |
Publisher | Institut National des Télécommunications |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds