Return to search

SYSTEMATIC STUDY OF GENE FUNCTIONS FOR MORPHOLOGICAL CHAIN FORMATION IN STREPTOCOCCUS SANGUINIS

Streptococcus sanguinis is a gram-positive facultative anaerobe that is indigenous to the oral cavity and a primary colonizer of the oral cavity. It serves as a tether for the attachment of several oral bacteria that colonize the tooth surface, form dental plaque, and cause periodontal disease. Previous experiments with streptococcal strains have suggested that cellular chain morphology of streptococci may influence the competitiveness, susceptibility to phagocytosis, acidurance, and aggregation of the bacterium. The purpose of this study was to systematically determine gene functions that contribute to cellular chain length morphology in the SK36 strain of S. sanguinis. Gene functions for 2048 mutants were elucidated along with Clusters of Orthologous Groups (COG) functions that may be related to or regulate chain formation and morphology. The COG functions with high ratios of genes involved with chain length morphology per number of total non-essential mutant COG functions were in the following order: Cell division and Chromosome Separation, Defense Mechanisms, and Signal Transduction Mechanisms, and Cell Motility and Secretion. Examination of gene annotations of the 326 mutants involved with chain morphology suggests that cellular chain length is dependent on cell wall division and septation, peptidoglycan synthesis, and cell wall mobility. Some of the genes that contribute to chain length properties may be co-regulated which may suggest that chain length phenotypes are a transcriptionally regulated property that further studies may confirm.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-3513
Date01 January 2011
CreatorsEvans, Karra
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0015 seconds