Return to search

Visual tracking of articulated and flexible objects

Humans can visually track objects mostly effortlessly. However, it is hard for a computer to track a fast moving object under varying illumination and occlusions, in clutter, and with varying appearance in camera projective space due to its relaxed rigidity or change in viewpoint. Since a generic, precise, robust, and fast tracker could trigger many applications, object tracking has been a fundamental problem of practical importance since the beginnings of computer vision. The first contribution of the thesis is a computationally efficient approach to tracking objects of various shapes and motions. It describes a unifying tracking system that can be configured to track the pose of a deformable object in a low or high-dimensional state-space. The object is decomposed into a chained assembly of segments of multiple parts that are arranged under a hierarchy of tailored spatio-temporal constraints. The robustness and generality of the approach is widely demonstrated on tracking various flexible and articulated objects. Haar-like features are widely used in tracking. The second contribution of the thesis is a parser of ensembles of Haar-like features to compute them efficiently. The features are decomposed into simpler kernels, possibly shared by subsets of features, thus forming multi-pass convolutions. Discovering and aligning these kernels within and between passes allows forming recursive trees of kernels that require fewer memory operations than the classic computation, thereby producing the same result but more efficiently. The approach is validated experimentally on popular examples of Haar-like features

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00939073
Date25 March 2013
CreatorsWESIERSKI, Daniel
PublisherInstitut National des Télécommunications
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0015 seconds