Return to search

Equations d'évolution sur certains groupes hyperboliques

Cette thèse porte sur l'étude d'équations d'évolution sur certains groupes hyperboliques, en particulier, nous étudions l'équation de la chaleur, l'équation de Schrödinger et l'équation des ondes modifiée, d'abord sur les arbres homogènes, ensuite sur des graphes symétriques. Sur les arbres homogènes, nous montrons que, sous une hypothèse d'invariance de jauge, on a existence globale des solutions de l'équation de Schrödinger ainsi qu'un phénomène de 'scattering' pour des données arbitraires dans l'espace des fonctions de carré intégrable sans restriction sur le degré de la non-linéarité, contrairement au cas euclidien ou au cas hyperbolique. Nous généralisons ensuite ce résultat sur les graphes symétriques de degré (k − 1)(r − 1) sous la condition k < r. Un de nos principaux résultats sur les graphes symétriques est l'estimation du noyau de la chaleur associé au laplacien combinatoire. Pour finir, nous établissons une expression explicite des solutions de l'équation des ondes modifiée sur les graphes symétriques.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01022926
Date06 December 2013
CreatorsJamal Eddine, Alaa
PublisherUniversité d'Orléans
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0037 seconds