Return to search

Modelling coupled surface water-groundwater flow and heat transport in a catchment in a discontinuous permafrost zone in Umiujaq, Northern Québec

Les systèmes hydrogéologiques devraient réagir au changement climatique de manière complexe. En région froide, la simulation de l'effet du changement climatique nécessite un modèle hydrologique intégré de pointe. Dans cette recherche, un modèle numérique entièrement couplé en 3D a été développé pour simuler l’écoulement des eaux souterraines et le transport de chaleur dans un bassin versant dans la région d'Umiujaq, dans le nord du Québec, au Canada. Le bassin versant est situé dans une zone de pergélisol discontinue et contient une épaisse couche glaciofluviale à grains grossiers formant un bon aquifère sous une unité gélive de silts marins sensible au gel. Une étude de terrain détaillée a été réalisée pour mesurer les caractéristiques du bassin versant telles que les propriétés hydrauliques et thermiques et la distribution des unités géologiques. Trois méthodes différentes disponibles dans le logiciel PEST sont utilisées pour caler le modèle 3D par rapport aux charges hydrauliques mesurées. Les résultats ont montré que l'utilisation de méthodes de calage simplifiées, telles que la méthode de zonation, n'est pas efficace dans cette zone d'étude, qui est très hétérogène. L’utilisation d’un calage plus détaillé par les méthodes du système PEST de points pilotes a permis de mieux s’adapter aux valeurs observées. Cependant, le temps de calcul était élevé. L'effet de la condition initiale pour la simulation du transport de chaleur est étudié en appliquant une condition initiale différente au modèle. Les résultats montrent que l'inclusion du processus de démarrage dans les simulations produit des températures simulées plus stables. Les zones du modèles à des profondeurs plus élevées, en-dessous de la profondeur de pénétration des variations saisonnières de température, nécessitent des temps de simulation plus longs pour être en équilibre avec les conditions limites appliquées. Les résultats montrent que l'application de la température moyenne de surface en tant que condition limite pour la simulation du transport de chaleur donne un meilleur ajustement aux valeurs observées en été qu'en hiver. En hiver, du fait de l’épaisseur variable de la neige dans le bassin versant, l’utilisation d’une température de surface uniforme diminue la qualité de l’ajustement aux valeurs observées. L'inclusion de l'advection dans la simulation du transport de chaleur accélère le taux d'augmentation de la température. De plus, l'eau chaude qui pénètre dans le sous-sol augmente la température souterraine dans les zones de recharge. Lorsque les eaux souterraines s'écoulent, elles perdent de l'énergie thermique. Par conséquent, le taux d’augmentation de la température dans les zones de décharge est inférieur à celui des zones de recharge. / Groundwater systems are expected to respond to climate change in a complex way. In cold regions, simulating the effect of climate change requires a state-of-the-art integrated hydrologic model. In this research, a fully coupled 3D numerical model has been developed to simulate groundwater-surface water flow and heat transport in a 2-km² catchment in Umiujaq, Nunavik (northern Quebec), Canada. The catchment is located in a discontinuous permafrost zone. It contains a lower aquifer, consisting of a thick coarse-grained glaciofluvial layer, overlain by a frost-susceptible silty marine unit and a perched upper aquifer. Detailed field investigations have been carried out to characterize the catchment, including its hydraulic and thermal properties and the subsurface geology. Three different calibration methods using the inverse calibration code PEST were used to calibrate the 3D flow model against measured hydraulic heads, assuming a fixed distribution of low hydraulic conductivity for discontinuous permafrost blocks. Heat transfer was not considered for this calibration. Results showed that using simplified calibration methods, such as the zoning method, is not efficient in this study area, which is highly heterogeneous. Using a more detailed calibration, such as the pilot-points method of PEST, gave a better fit to observed values. However, the computational time was significantly higher. In subsequent simulations, which included heat transport, different approaches for assigning initial temperatures during model spin-up were investigated. Results show that including the spin-up process in the simulations produces more realistic simulated temperatures. Furthermore, the spin-up improves the model fit to deeper subsurface temperatures because areas of the subsurface below the depth where seasonal surface temperature variations penetrate require longer simulation times to reach equilibrium with the applied boundary conditions. Applying the annual average surface temperature as the boundary condition to the heat transport simulation provided a better fit to observed values in the summer compared to winter. During winter, because of different snow thicknesses throughout the catchment, using a uniform surface temperature results in a poor fit to observed values. v Simulations show that warm water entering the subsurface increases the subsurface temperature in the recharge areas. As groundwater flows through the subsurface, it loses thermal energy. Therefore, discharging water is cooler than recharging water. This causes the rate of temperature rise to be lower in discharge areas than in recharge areas. The modelling results have helped provide insights into 3D simulation of coupled water flowheat transfer processes. Furthermore, it will help users of cryo-hydrogeological models in understanding effective parameters in development and calibration of model to develop their own site-specific models.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/66690
Date18 February 2021
CreatorsParhizkar, Masoumeh
ContributorsTherrien, René, Molson, John W. H.
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 173 pages), application/pdf
CoverageQuébec (Province) Umiujaq
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0016 seconds