Les microscopes champ proche micro-ondes sont des instruments émergents pour la caractérisation de matériaux. Dans ce travail, un microscope champ proche micro-ondes fait maison est d'abord décrit et analysé en termes de résolution et de largeur de bande de fréquences de fonctionnement. Ensuite, il est mis en œuvre pour la caractérisation d'une grande variété de matériaux tels que par exemple des métaux, des semi-conducteurs, des diélectriques, des liquides et des nanomatériaux 2D. Le système intégre un interférométre pour améliorer la sensibilité de la mesure pour des fréquences de fonctionnement couvrant la bande 2-18 GHz. La sensibilité et les différents modes de fonctionnement disponibles (contact, sans contact, environnement liquide) permettent d'adresser une grande variété de domaines d'applications. La résolution latérale obtenue par cet instrument est plus petite de plusieurs ordres de grandeur que la longueur d'onde de fonctionnement, ouvrant ainsi la voie à une caractérisation locale. Les propriétés électromagnétiques des matériaux ont été extraites en utilisant la méthode de perturbation et celle de la ligne de transmission. En particulier, les propriétés diélectriques de solutions salines aqueuses et l’impédance complexe du graphène ont été étudiées dans une large bande de fréquence. Ce microscope champ proche micro-ondes basé sur une méthode interférométrique qui permet une analyse quantitative des propriétés des matériaux de manière non-destructive peut adresser un grand éventail d’applications dans de nombreux domaines scientifiques. Enfin, l’ensemble des résultats montre que potentiellement la microscopie champ proche micro-ondes dispose des atouts pour devenir un outil de métrologie important pour la caractérisation en micro- et nano-électronique. / Near-field microwave microscopes are emerging instruments for materials characterization. In this work, a home-made near-field microwave microscope is first described and analyzed in terms of resolution performance and frequency band of operation. Then, it is applied to the characterization of a large variety of materials such as metals, semiconductors, dielectrics, liquids and 2D nanomaterials. The system is based on an interferometric technique to improve the measurement sensitivity in the entire frequency range of operation spanning from 2 to 18 GHz. The sensitivity and the different operating modes available (contact, non-contact, liquid environment) allow addressing a large variety of application fields. The instrument allows a sub-wavelength lateral resolution which is more than two orders of magnitude smaller than the operating wavelength, opening the way to a local characterization. The cavity perturbation and transmission line approaches have been used to extract the electromagnetic properties of materials. In particular dielectric properties of saline aqueous solutions and complex impedance of graphene have been investigated in a broad frequency band. It provides a quantitative analysis of material properties in a non-destructive manner to address numerous applications in many scientific fields. Finally, all the results together show that the interferometer-based near-field microwave microscope has the potential to become an important metrology tool for characterizations in micro- and nano-electronics.
Identifer | oai:union.ndltd.org:theses.fr/2016LIL10175 |
Date | 12 December 2016 |
Creators | Gu, Sijia |
Contributors | Lille 1, Lasri, Tuami |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0014 seconds