Return to search

Méthodes d’optimisation distribuée pour l’exploitation sécurisée des réseaux électriques interconnectés / Distributed optimization methods for the management of the security of interconnected power systems

Notre société étant plus dépendante que jamais au vecteur électrique, la moindre perturbation du transport ou de l’acheminement de l’électricité a un impact social et économique important. La fiabilité et la sécurité des réseaux électriques sont donc cruciales pour les gestionnaires de réseaux, en plus des aspects économiques. De plus, les réseaux de transport sont interconnectés pour réduire les coûts des opérations et pour améliorer la sécurité. Un des plus grand défis des gestionnaires des réseaux de transport est ainsi de se coordonner avec les réseaux voisins, ce qui soulève des problèmes liés à la taille du problème, à l’interopérabilité et à la confidentialité des données.Cette thèse se focalise principalement sur la sécurité des opérations sur les réseaux électriques, c’est pourquoi l’évolution des principales caractéristiques des blackouts, qui sont des échecs de la sécurité des réseaux, sont étudiés sur la période 2005-2016. L’approche de cette étude consiste à déterminer quelles sont les principales caractéristiques des incidents de ces 10 dernières années, afin d’identifier ce qui devrait être intégré pour réduire le risque que ces incidents se reproduisent. L’évolution a été étudiée et comparé avec les caractéristiques des blackouts qui se sont produit avant 2005. L’étude se focalise sur les préconditions qui ont mené à ces blackouts et sur les cascades, et particulièrement sur le rôle de la vitesse des cascades. Les caractéristiques importante sont extraites et intégrées dans la suite de notre travail.Un algorithme résolvant un problème préventif d’Optimal Power Flow avec contraintes de sécurité (SCOPF) de manière distribuée est ainsi développé. Ce problème consiste en l’ajout de contraintes qui assure qu’après la perte de n’importe quel appareil d’importance, le nouveau point d’équilibre, atteint suite au réglage primaire en fréquence, respecte les contraintes du système. L’algorithme développé utilise une décomposition fine du problème et est implémenté sous le paradigme multi-agent, basé sur deux catégories d’agents : les appareils et les bus. Les agents sont coordonnés grâce à l’ « Alternating Direction Method of Multipliers (ADMM)» et grâce à un problème de consensus. Cette décomposition procure l’autonomie et la confidentialité nécessaire aux différents acteurs du système, mais aussi, un bon passage à l’échelle par rapport à la taille du problème. Cet algorithme a aussi pour avantage d’être robuste à n’importe quelle perturbation, incluant la séparation du système en plusieurs régions.Puis, pour prendre en compte l’incertitude sur la production créée par les erreurs de prédiction des fermes éoliennes, une approche distribuée à deux étapes est développée pour résoudre un problème d’Optimal Power Flow avec contraintes probabilistes (CCOPF), d’une manière complétement distribuée. Les erreurs de prédiction des fermes éoliennes sont modélisées par des lois normales indépendantes et les écarts par rapport aux plannings de production sont considérés compensés par le réglage primaire en fréquence. La première étape de l’algorithme a pour but de déterminer des paramètres de sensibilités nécessaires pour formuler le problème. Les résultats de cette étape sont ensuite des paramètres d’entrée de la seconde étape qui, elle, résout le problème de CCOPF. Une extension de cette formulation permet d’ajouter de la flexibilité au problème en permettant la réduction de la production éolienne. Cet algorithme est basé sur la même décomposition fine que précédemment où les agents sont également coordonnés par l’ADMM et grâce à un problème de consensus. En conclusion, cet algorithme en deux étapes garantit la confidentialité et l’autonomie des différents acteurs, et est parallèle et adaptée aux plateformes hautes performances. / Our societies are more dependent on electricity than ever, thus any disturbance in the power transmission and delivery has major economic and social impact. The reliability and security of power systems are then crucial to keep, for power system operators, in addition to minimizing the system operating cost. Moreover, transmission systems are interconnected to decrease the cost of operation and improve the system security. One of the main challenges for transmission system operators is therefore to coordinate with interconnected power systems, which raises scalability, interoperability and privacy issues. Hence, this thesis is concerned with how TSOs can operate their networks in a decentralized way but coordinating their operation with other neighboring TSOs to find a cost-effective scheduling that is globally secure.The main focus of this thesis is the security of power systems, this is why the evolution of the main characteristics of the blackouts that are failures in power system security, of the period 2005-2016 is studied. The approach consists in determining what the major characteristics of the incidents of the past 10 years are, to identify what should be taken into account to mitigate the risk of incidents. The evolution have been studied and compared with the characteristics of the blackouts before 2005. The study focuses on the pre-conditions that led to those blackouts and on the cascades, and especially the role of the cascade speed. Some important features are extracted and later integrated in our work.An algorithm that solve the preventive Security Constrained Optimal Power Flow (SCOPF) problem in a fully distributed manner, is thus developed. The preventive SCOPF problem consists in adding constraints that ensure that, after the loss of any major device of the system, the new steady-state reached, as a result of the primary frequency control, does not violate any constraint. The developed algorithm uses a fine-grained decomposition and is implemented under the multi-agent system paradigm based on two categories of agents: devices and buses. The agents are coordinated with the Alternating Direction method of multipliers in conjunction with a consensus problem. This decomposition provides the autonomy and privacy to the different actors of the system and the fine-grained decomposition allows to take the most of the decomposition and provides a good scalability regarding the size of the problem. This algorithm also have the advantage of being robust to any disturbance of the system, including the separation of the system into regions.Then, to account for the uncertainty of production brought by wind farms forecast error, a two-step distributed approach is developed to solve the Chance-Constrained Optimal Power Flow problem, in a fully distributed manner. The wind farms forecast errors are modeled by independent Gaussian distributions and the mismatches with the initials are assumed to be compensated by the primary frequency response of generators. The first step of this algorithm aims at determining the sensitivity factors of the system, needed to formulate the problem. The results of this first step are inputs of the second step that is the CCOPF. An extension of this formulation provides more flexibility to the problem and consists in including the possibility to curtail the wind farms. This algorithm relies on the same fine-grained decomposition where the agents are again coordinated by the ADMM and a consensus problem. In conclusion, this two-step algorithm ensures the privacy and autonomy of the different system actors and it is de facto parallel and adapted to high performance platforms.

Identiferoai:union.ndltd.org:theses.fr/2018GREAT063
Date25 September 2018
CreatorsVelay, Maxime
ContributorsGrenoble Alpes, Bésanger, Yvon, Retière, Nicolas
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.8894 seconds