Energy management strategies for microgrids, containing energy storage, renewable energy sources (RES), and electric vehicles (EVs); which interact with the grid on an individual basis; are presented in Chapter 3. An optimization problem to reduce cost, formulated over a rolling time horizon, using predicted values of load demand, EV connection/disconnection times, and charge levels at time of connection, is described. The solution provides the on-site storage and EV charge/discharge powers. For the first time, both bidirectional and unidirectional charging are considered for EVs and a controller which accommodates uncertainties in EV energy levels and connection/disconnection times is presented. In Chapter 4, a stochastic chance constraints based optimization is described. It affords significant improvement in robustness, over the conventional controller, to uncertainties in system parameters. Simulation results demonstrate that the stochastic controller is at least twice as effective at meeting the desired EV charge level at specific times compared to the non-stochastic version, in the presence of uncertainties.
In Chapter 5, a network of microgrids, containing RES and batteries, which trade energy among themselves and with the utility grid is considered. A novel distributed energy management system (EMS), based on a central EMS using a Multi-Objective (MO) Rolling Horizon (RH) scheme, is presented. It uses Alternating Direction Method of Multipliers (ADMM) and Quadratic Programming (QP). It is inherently more data-secure and resilient to communication issues than the central EMS. It is shown that using an EMS in the network provides significant economic benefits over MGs connected directly to the grid. Simulations demonstrate that the distributed scheme produced solutions which are very close to those of the central EMS. Simulation results also reveal that the faster, less memory intensive distributed scheme is scalable to larger networks -- more than 1000 microgrids as opposed to a few hundreds for the central EMS. / Thesis / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/20651 |
Date | January 2016 |
Creators | Ravichandran, Adhithya |
Contributors | Sirouspour, Shahin, Emadi, Ali, Electrical and Computer Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds