Contexte. Les protéines transmembranaires ont une importance considérable tant au niveau de la survie d'une cellule qu'au niveau de ces interactions avec les autres cellules. En raison de contraintes techniques, la cristallisation de ce type de protéine demeure très complexe, ce qui limite grandement l’exploration de leur structure. Pour contourner ces difficultés, différents outils de prédiction ont été développés,en se fondant originellement sur l'hydrophobicité des régions enfouies dans la membrane. Méthode. L'outil développé repose sur une dérivation de la moyenne d'hydrophobicité calculée sur deux ensembles de taille de fenêtres. Le premier ensemble (G1) contient des petites tailles de fenêtres ce qui correspond à des événements locaux, tandis que le second (G2) correspond à des tailles de fenêtres plus larges, adaptées à la taille des hélices formant certaines protéines transmembranaires. La variation d'hydrophobicité est obtenue en dérivant les moyennes d'hydrophobicité. Un consensus est établi pour chaque groupe, et les résultats sont comparés à un ensemble de protéines transmembranaires cristallisées. Résultats. Les variations d'hydrophobicité G2 sont liées aux extrémités des hélices transmembranaires,tandis que les variations G1 sont en relation avec la limites des structures et certaines irrégularités structurelles.Ces résultats nous ont amené à introduire une nouvelle notion : les unités transmembranaires(TMU). Les TMU consistent en un ensemble de sous-structures qui composent les structures transmembranaires. / Background. Few high-resolution structures of integral membranes proteins are available, as crystallization of such proteins needs yet to overcome too many technical limitations. Nevertheless, prediction oftheir transmembrane (TM) structure by bioinformatics tools provides interesting insights on the topology of these proteins.Method. We describe here how to extract new information from the analysis of hydrophobicity variations or hydrophobic pulses (HPulses) in the sequence of integral membrane proteins using the Hydrophobic Pulse Predictor, a new tool we developed for this purpose. To analyze the primary sequence of 70 integralmembrane proteins we defined two levels of analysis : G1-HPulses for sliding windows of n=2 to 6 andG2-HPulses for sliding windows of n=12 to 16.Results. The G2-HPulse analysis of 541 transmembrane helices allowed the definition of the new conceptof transmembrane unit (TMU) that groups together transmembrane helices and segments with potentialadjacent structures. In addition, the G1-HPulse analysis identified helix irregularities that correspondedto kinks, partial helices or unannotated structural events. These irregularities could represent key dynamicelements that are alternatively activated depending on the channel status as illustrated by the crystalstructures of the lactose permease in different conformations. Our results open a new way in the understanding of transmembrane secondary structures : hydrophobicity through hydrophobic pulses stronglyimpacts on such embedded structures and is not confined to define the transmembrane status of aminoacids.
Identifer | oai:union.ndltd.org:theses.fr/2010MON13518 |
Date | 15 December 2010 |
Creators | Paulet, Damien |
Contributors | Montpellier 1, Béroud, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds