Return to search

Sistemas complexos, séries temporais e previsibilidade / Complex systems, time series and predictability

Para qualquer sistema observado, físico ou qualquer outro, geralmente se deseja fazer predições para sua evolução futura. Algumas vezes, muito pouco é conhecido sobre o sistema. Se uma série temporal é a única fonte de informação no sistema, predições de valores futuros da série requer uma modelagem da lei da dinâmica do sistema, talvez não linear. Um interesse em particular são as capacidades de previsão do modelo global para análises de séries temporais. Isso pode ser um procedimento muito complexo e computacionalmente muito alto. Nesta dissertação, nos concetraremos em um determinado caso: Em algumas situações, a única informação que se tem sobre o sistema é uma série sequencial de dados (ou série temporal). Supondo que, por detrás de tais dados, exista uma dinâmica de baixa dimensionalidade, existem técnicas para a reconstrução desta dinâmica.O que se busca é desenvolver novas técnicas para poder melhorar o poder de previsão das técnicas já existentes, através da programação computacional em Maple e C/C++.

Identiferoai:union.ndltd.org:IBICT/urn:repox.ist.utl.pt:UERJ:oai:www.bdtd.uerj.br:2039
Date04 February 2011
CreatorsHenrique Carli
ContributorsLuis Antonio Campinho Pereira da Mota, Luiz Guilherme Silva Duarte, Caio Henrique Lewenkopf, Eduardo Vasquez Corrêa Silva
PublisherUniversidade do Estado do Rio de Janeiro, Programa de Pós-graduação em Física, UERJ, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UERJ, instname:Universidade do Estado do Rio de Janeiro, instacron:UERJ
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds