There are two aspects in this study: cylinder penetrations and XBP (Expendable
Bottom Penetrometer) interpretations. The cylinder studies firstly investigate the
relationship between the soil resisting force and penetration depth by a series of rateindependent
finite element analyses of pre-embedded penetration depths, and validate
the results by upper and lower bound solutions from classical plasticity theory.
Furthermore, strain rate effects are modeled by finite element simulations within a
framework of rate-dependent plasticity. With all forces acting on the cylinder estimated,
penetration depths are predicted from simple equations of motion for a single particle.
Comparisons to experimental results show reasonable agreement between model
predictions and measurements.
The XBP studies follow the same methodology in investigating the soil shearing
resistance as a function of penetration depth and velocity by finite element analyses.
With the measurements of time decelerations during penetration of the XBP, sediment
shear strength profile is inferred from a single particle kinetic model. The predictions
compare favorably with experimental measurements by vane shear tests.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/2555 |
Date | 01 November 2005 |
Creators | Shi, Han |
Contributors | Aubeny, Charles P. |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | 1549325 bytes, electronic, application/pdf, born digital |
Page generated in 0.0018 seconds