Return to search

Novel stochastic inversion methods and workflow for reservoir characterization and monitoring

Reservoir models are generally constructed from seismic, well logs and other related datasets using inversion methods and geostatistics. It has already been recognized by the geoscientists that such a process is prone to non-uniqueness. Practical methods for estimation of uncertainty still remain elusive. In my dissertation, I propose two new methods to estimate uncertainty in reservoir models from seismic, well logs and well production data. The first part of my research is aimed at estimating reservoir impedance models and their uncertainties from seismic data and well logs. This constitutes an inverse problem, and we recognize that multiple models can fit the measurements. A deterministic inversion based on minimization of the error between the observation and forward modeling only provides one of the best-fit models, which is usually band-limited. A complete solution should include both models and their uncertainties, which requires drawing samples from the posterior distribution. A global optimization method called very fast simulated annealing (VFSA) is commonly used to approximate posterior distribution with fast convergence. Here I address some of the limitations of VFSA by developing a new stochastic inference method, named Greedy Annealed Importance Sampling (GAIS). GAIS combines VFSA with greedy importance sampling (GIS), which uses a greedy search in the important regions located by VFSA to attain fast convergence and provide unbiased estimation. I demonstrate the performance of GAIS on post- and pre-stack data from real fields to estimate impedance models. The results indicate that GAIS can estimate both the expectation value and the uncertainties more accurately than using VFSA alone. Furthermore, principal component analysis (PCA) as an efficient parameterization method is employed together with GAIS to improve lateral continuity by simultaneous inversion of all traces. The second part of my research involves estimation of reservoir permeability models and their uncertainties using quantitative joint inversion of dynamic measurements, including synthetic production data and time-lapse seismic related data. Impacts from different objective functions or different data sets on the model uncertainty and model predictability are investigated as well. The results demonstrate that joint inversion of production data and time-lapse seismic related data (water saturation maps here) reduces model uncertainty, improves model predictability and shows superior performance than inversion using one type of data alone. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/23205
Date18 February 2014
CreatorsXue, Yang, active 2013
Source SetsUniversity of Texas
Languageen_US
Detected LanguageEnglish
Formatapplication/pdf

Page generated in 0.0018 seconds