Return to search

Computing Safe Anonymisations of Quantified ABoxes w.r.t. EL Policies: Extended Version

In recent work, we have shown how to compute compliant anonymizations of quantified ABoxes w.r.t. EL policies. In this setting, quantified ABoxes can be used to publish information about individuals, some of which are anonymized. The policy is given by concepts of the Description Logic (DL) EL, and compliance means that one cannot derive from the ABox that some non-anonymized individual is an instance of a policy concept. If one assumes that a possible attacker could have additional knowledge about some of the involved non-anonymized individuals, then compliance with a policy is not sufficient. One wants to ensure that the quantified ABox is safe in the sense that none of the secret instance information is revealed, even if the attacker has additional compliant knowledge. In the present paper, we show that safety can be decided in polynomial time, and that the unique optimal safe anonymization of a non-safe quantified ABox can be computed in exponential time, provided that the policy consists of a single EL concept. / This is an extended version of an article published in: Proceedings of the 36th ACM/SIGAPP Symposium on Applied Computing (SAC ’21), ACM

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79627
Date20 June 2022
CreatorsBaader, Franz, Kriegel, Francesco, Nuradiansyah, Adrian, Peñaloza, Rafael
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:report, info:eu-repo/semantics/report, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa2-785040, qucosa:78504

Page generated in 0.0026 seconds