This thesis deals with the design of a dynamic model of a harmonic drive. It includes a theoretical study aimed at the analysis of the harmonic drive gearing principle and its nonlinear properties. The first part of the practical section deals with the analytical calculation of the nondeformed geometry of the Flexspline. Based on these results, several simulations in ANSYS are created to identify torsional characteristics of a harmonic drive. These simulation models are further enhanced by the analysis of clearance, backlash and inaccuracies and their impact on torsional properties. By using MATLAB /Simulink, several dynamic submodels are created representing the individual characteristics of nonlinearities in harmonic drives. Furthermore, a comprehensive dynamic model is created of the mechatronic system which is describing all nonlinearities and kinematic error of the transmission. The dynamic model is also experimentally verified based on its damping properties.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:254390 |
Date | January 2016 |
Creators | Garami, Boris |
Contributors | Lošák, Petr, Hadaš, Zdeněk |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds