L'adsorption sur charbon actif est une technique relativement répandue de post-traitement des effluents aqueux. Cependant il ne s'agit pas d'un traitement ultime, puisque les polluants restent concentrés sur la surface solide. Des techniques de régénération doivent donc être mises en œuvre. C'est dans ce contexte qu'ont été étudiés ici les procédés d'oxydation avancée Fenton et photo-Fenton, dont l'efficacité est reconnue pour éliminer la pollution organique. Plus précisément, l'objet de cette thèse est l'étude sur plusieurs cycles consécutifs de l'adsorption du phénol sur charbon actif et de la régénération in-situ de l'adsorbant par oxydation (photo)Fenton. Deux charbons actifs différents ont été étudiés : le premier à la fois micro et mésoporeux (PICA L27) et le second essentiellement microporeux (PICA S23). Deux séries d'expériences ont été ainsi réalisées : 1) d'abord en réacteur agité (adsorption et oxydation en mode batch), 2) puis dans des conditions plus proches du procédé réel, avec une adsorption continue en lit fixe, suivie de l'oxydation batch par recirculation du réactif Fenton au travers du lit saturé. Dans le premier cas, les effets de la concentration en Fe2+ et en H2O2 ont été analysés, montrant que les conditions optimales pour l'oxydation homogène du phénol (sans charbon) ne sont pas les meilleures pour la régénération du charbon saturé par le polluant : une réduction continue de la capacité d'adsorption du L27, de 100% à 23%, est observée après 3 oxydations, en raison de la consommation du charbon et de la diminution de sa surface spécifique. Par contre, une concentration plus élevée de Fe2+ et plus faible de H2O2 (2 fois la stœchiométrie) permettent de retrouver 50% de la capacité initiale d'adsorption pendant au moins 4 cycles consécutifs. Comme il a été vu dans des études précédentes utilisant l'oxydation à l'air (sous température et pression), l'efficacité de régénération est aussi bien plus faible pour le S23 (autour de 20%). Des résultats similaires ont été obtenus sur le réacteur à lit fixe avec recirculation. Durant l'oxydation, le taux de conversion du Carbone Organique Total en phase liquide a atteint à chaque fois une valeur limite, probablement du fait de la formation de complexes entre le fer et les acides carboxyliques produits. L'utilisation de l'irradiation UV, qui est connue pour décomposer ces complexes, a conduit à une minéralisation quasi-totale et a amélioré l'efficacité de régénération du charbon, jusqu'à 56% de la capacité initiale après 2 cycles (contre 40% pour l'oxydation Fenton simple) / Adsorption on activated carbon (AC) is a technique extensively applied for wastewater treatment. However adsorption alone is not an ultimate solution, since the pollutants are just immobilized on the carbon surface. There is thus a need for efficient regeneration techniques. In this context, Fenton and photo-Fenton oxidations, which are promising technologies to destroy organic pollution, have been tested to regenerate the AC. The purposes of this study are the adsorption of phenol on activated carbons and the consecutive in-situ regeneration of carbon by (photo-) Fenton oxidation. Two different operations have been carried out: 1) batch procedure in order to investigate the influence of Fe2+ and H2O2 concentrations; 2) continuous fixed bed adsorption, followed by a batch circulation of the Fenton’s reagent through the saturated AC bed, to examine the efficiency of the real process. Two different activated carbons have been also studied: a both micro- and mesoporous AC (PICA L27) and an only microporous one (PICA S23). In the batch reactor the best conditions found for pollutant mineralization in the homogeneous Fenton system are not the best for AC regeneration: a continuous reduction of adsorption capacity of L27 is observed after 3 oxidations, due to the decrease of both AC weight and surface area. Higher concentration of Fe2+ and lower concentration of H2O2 (2 times the stoechiometry) lead to a 50% recovery of the initial adsorption capacity during at least 4 consecutive cycles for L27, while about 20% for S23. In the consecutive continuous adsorption/batch Fenton oxidation process, the regeneration efficiency reaches 30% to 40% for L27 after two cycles whatever the feed concentration and less than 10% for S23. A photo-Fenton test performed on L27 shows almost complete mineralization (contrary to dark Fenton) and further improves recovery of AC adsorption capacity although not complete (56% after two cycles)
Identifer | oai:union.ndltd.org:theses.fr/2010INPT0089 |
Date | 25 June 2010 |
Creators | Muranaka, Cínthia Tiemi |
Contributors | Toulouse, INPT, Universidade de São Paulo (Brésil), Delmas, Henri, Nascimento, Cláudio Augusto Oller Do |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | Portuguese |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds