The charge-carriers of the organic layers are one of the dominant factors to influence the performance of OLEDs. Thus, it is very important to study and understand the charge transporting behaviors in the organic layers of OLED. However, the organic materials show usually to have very high resistivity and very low carrier mobility, and then using general modeling techniques suitable for common semiconductors cannot conveniently simulate that.
First, a transporting model of the bilayer organic OLED are proposed in this dissertation, in which model were based on the current-voltage characteristics simulation proposed by Lampert and the continuous equation of current transport. The model contains a description of ohmic contacts, thermal emission and tunneling injection, space charge effects, trap effect, field dependent mobility and recombination processes. In addition, the method of Monte Carlo is a computational technique by using random numbers to compute an approximation to something whose exact value is difficult or impossible to compute, and that is used to simulate the bilayer organic OLED.
In this study, a numerical model proposed is successfully applied to describe the characteristics of the bilayer organic light-emitting diode. The model is satisfyingly demonstrated not only for applying to simulate several bilayer devices (1-Naphdata/Alq3¡BTPD/Alq3) reported but also for some devices obtained in our results. Finally, it can be extended to optimize the analysis and fabrication of bilayer devices.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0627102-164946 |
Date | 27 June 2002 |
Creators | Chu, Chiu-Ping |
Contributors | Wang-Chuang Kuo, Heng-Yi Ueng, Aine Hong, Cheu-Pyeng Cheng |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0627102-164946 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0014 seconds