Perylene-based materials, including charge-transport discotic liquid crystals and charge-transfer long-wavelength absorbing chromophores, for potential organic electronic and optoelectronic applications, were designed, synthesized and characterized. Two types of discotic liquid crystals, perylene diimides and coronene diimides, can form columnar liquid crystalline phases over a wide temperature range; many of them can have room-temperature liquid crystalline phases after cooling from isotropic liquid. Their charge transport properties were studied by space-charge limited current method; high charge carrier mobilities, with the highest being up to 6.6 cm2/Vs, were found in liquid crystalline phases of these materials under ambient conditions. Structural variables, including aromatic cores and side groups, were examined to get a certain degree of understanding of charge transport properties in these discotic liquid crystals. It was found that mesophase order can have an important effect on charge carrier mobilities. The discotic liquid crystals with high charge carrier mobilities are serious candidates for use in large-area low-cost applications such as solar cells. Long-wavelength, highly absorbing chromophores, featuring donor-substituted perylene diimides, were generated by a combination of charge-transfer process and conjugation extension. The charge-transfer chromophores are expected to lead to further investigation on their potentials as sensitizers in Grtzel solar cells.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7649 |
Date | 17 August 2005 |
Creators | An, Zesheng |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | 13371611 bytes, application/pdf |
Page generated in 0.0064 seconds