Return to search

Synthesis and Studies of Wide-Band Capturing BODIPY-Fullerene Based Donor-Acceptor Systems

Artificial photosynthesis is the process, which mimics the natural photosynthesis process in order to convert solar energy to chemical energy. This process can be separated into four parts, which are antenna system, reaction center, water oxidation center, and proton reduction center. If we only focus on the ‘antenna system and reaction center' modules, expanding the absorption band in antenna system and generating long-lived charge separated state in reaction center are two fantastic strategies to design the molecules in order to improve the efficiency of the artificial photosynthesis process.
In the first work of this dissertation, mono-18-crown-6 and mono-ammonium binding strategy was used to connect BODIPY- C60 supramolecular based donor–acceptor conjugates. The meso- position of BODIPY was modified by benzo-18-crown-6, and the 3, 5 methyl positions were replaced by two styryl groups, which covered additional donor (triphenylamine or 10-methylphenothiazine). The acceptor is a fulleropyrrolidine derivative, which included an ethyl ammonium cation. The absorbance wavelengths of the donor covered 300-850 nm, which is the visible/near IR region (wide band capturing). The ultrafast charge separation and relatively slow charge recombination was found from femtosecond transient absorption study.
Next, a ‘two point' bis-18-crown-6 and bis-ammonium binding strategy was utilized to link BODIPY- C60 supramolecular based donor–acceptor conjugates. In this case, the meso- position of the BODIPY was modified by a secondary donor (triphenylamine, phenothiazine, or ferrocene). And the 3, 5 methyl positions were replaced by two styryl groups, which included benzo-18-crown-6. The acceptor (fulleropyrrolidine) was functionalized by bis-alky ammonium cations. The absorbance/ fluorescence emission titration and computational studies supported that the ‘two-point' strategy has stronger binding than ‘one-point' strategy. The relatively slow charge separation was found in these donor-acceptor conjugates.
To extend the second work, a pristine BODIPY was linked to the meso- position of the BODIPY-bis-benzo-18-crown-6. When the acceptor (C60-bis- ammonium) was added to the system, a sequential energy transfer (EnT) followed by electron transfer (ET) process was performed. The energy transfer was found from absorbance/ fluorescence emission studies, and the photoinduced electron transfer was observed from femtosecond and nanosecond transient absorption study. This is a great mode to mimic the ‘antenna-reaction center' events of natural photosynthesis.
In the last work of this dissertation, triplet sensitizers (I2BODIPY and I2azaBODIPY) covalently linked with a C60 to form the donor-acceptor system. In this work, triplet charge separated state (long-lived charge separated state) was expected. According to the femtosecond transient absorption studies, we observed the singlet charge separation was faster than the intersystem crossing process, that was the reason that only singlet charge separated state was found for I2BODIPY-C60, and no electron transfer was found for I2 azaBODIPY-C60.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1703394
Date05 1900
CreatorsShao, Shuai
ContributorsD'Souza, Francis, Richmond, Michael G., Cundari, Thomas R., Mukherjee, Sundeep, Dzyuba, Sergei V.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatxvi, 192 pages, Text
RightsPublic, Shao, Shuai, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0028 seconds