Return to search

High-Energy, Long-Lived Charge-Separated States via Molecular Engineering of Triplet State Donor-Acceptor Systems

Molecular engineering of donor-acceptor dyads and multimodular systems to control the yield and lifetime of charge separation is one of the key goals of artificial photosynthesis for harvesting sustainably solar energy. The design of the donor-acceptor systems mimic a part of green plants and bacterial photosynthetic processes. The photochemical events in natural photosynthesis involve the capturing and funneling of solar energy by a group of well-organized chromophores referred to as an ‘antenna' system causing an electron transfer into the ‘reaction center,' where an electron transfer processes occur resulting a long-lived charge separated state. Over the last two to three decades, many efforts have been directed by the scientific community designing of multi-modular systems that are capable of capturing most of the useful sunlight and generating charge separated states of prolonged lifetimes with adequate amounts of energy.
In this dissertation, we report on the design and synthesis of donor–acceptor conjugates with the goal of modulating the yield and lifetime of their charge separated states and hence, improving the conversion of light energy into chemical potential. In simple donor-acceptor systems, generally, the energy and electron transfer events originate from the singlet excited state of the donor or acceptor and can store the greatest amount of energy but must be fast to out compete intersystem crossing. To address this limitation, we have designed novel donor –acceptor conjugates that use high-energy triplet sensitizers in which electron transfer is initiated from the long lived triplet state of the donor. The triplet photosensitizers used were palladium(II) porphyrin and platinum(II) porphyrin. Heavy metal effect in these porphyrins promoted intersystem crossing and the energies of their excited state was quite high. For the case of palladium (II) porphyrin the energy stored was found to 1.89 eV and that of platinum(II) porphyrin 1.84 eV.
In addition to using triplet photosensitizers as donors, we have used donors that are difficult to oxidize and hence producing long lived charge separated states with adequate amount of stored energy. The system that was used for this study is zinc porphyrin with meso-aryl pentafluorophenyl substituents and fullerene, C60 as the acceptor. The presence of fluorine substituents on zinc porphyrin makes it harder to undergo oxidation. When this high potential donor-acceptor system undergoes a photoinduced charge-separation, the estimated energy stored was found to be 1.70 eV, one of the highest reported in literature so far. To further extend the lifetime of the charge separated states generated in this high-potential zinc porphyrin-fullerene dyad a pyridine functionalized tetrathiafulvalene was axially coordinated to the Zn metal producing a supramolecular triad capable of producing long-lived charge separated state.
In a subsequent study, a multi-modular donor-acceptor system composed of a porphyrin, fullerene (C60) and a BF2-chelated dipyrromethene (BODIPY) with a supramolecular arrangement in the form of porphyrin-BODIPY-C60, one of the few reported in literature. By selectively exciting BODIPY and ZnP moieties, efficient singlet-singlet energy transfer from 1BODIPY * to ZnP in toluene was observed in the case of the dyad ZnP-BODIPY. However, when ZnP is excited, electron transfer occurred with the formation ZnP.+-BODIPY-C60.- charge separated state persisting for microseconds.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1248463
Date08 1900
CreatorsObondi, Christopher O
ContributorsD'Souza, Francis, Richmond, Michael, Golden, Teresa, Cundari, Tom
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatxiv, 230 pages, Text
RightsPublic, Obondi, Christopher O, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0019 seconds