Le présent document traite de l'utilisation d'un nouveau platelage en aluminium, présentement développé à l'Université Laval. Ce nouveau platelage, d'une hauteur de 200 mm, se veut une alternative aux dalles en béton armé couramment utilisées dans les ponts routiers. Il est proposé de connecter le platelage à des poutres en acier à l'aide d'une connexion boulonnée antiglissement utilisant des boulons en acier galvanisé ASTM F3125/F3125M-15a de grade A325 et de diamètre M20. L'optique est de développer une action composite totale afin d'obtenir la pleine capacité de la poutre mixte. Cependant, le coefficient de dilatation thermique de l'aluminium étant le double de celui de l'acier, des mouvements différentiels entre le platelage en aluminium et les poutres en acier sont possibles suite à des variations de température. Le comportement de cet assemblage sous les charges thermiques doit donc être étudié. Ce projet propose d'utiliser la méthode des éléments finis à l'aide du logiciel commercial Abaqus afin de déterminer le comportement de cet assemblage face à la combinaison des charges thermiques et mécaniques à l'état limite d'utilisation (ÉLUT) ainsi qu'à l'état limite ultime (ÉLUL). Ces charges sont déterminées à partir des directives du Code canadien sur le calcul des ponts routiers (CAN/CSA S6-14). Les résultats montrent qu'il est possible de développer l'action composite totale entre le platelage en aluminium et les poutres en acier. Aussi, en suivant les recommandations prescrites par cette étude, il est possible de prévenir le glissement sous les charges thermiques et de maintenir le comportement antiglissement de l'assemblage à l'ÉLUT en plus de prévenir la rupture de l’assemblage boulonné sous la combinaison des charges thermiques et mécaniques à l’ÉLUL. / This project concerns the use of a new aluminium bridge deck that is being developed at Université Laval. It is a 200 mm deep aluminium bridge deck, which represents an alternative to the reinforced concrete slabs in bridges. This project proposes to connect the aluminium bridge deck to steel girders using galvanized ASTM F3125/F3125M-15a grade A325 bolts of diameter M20 in a slip-critical connection. Full composite action between the deck and the girders is expected in order to develop the full capacity of the composite section. However, the coefficient of thermal expansion of aluminium, being twice that of steel, differential movements may occur during temperature changes. To understand the behavior of the bolted connection under such thermal loadings, this project uses finite element model with the Abaqus software. The combinations of dead, live and thermal loads at the ultimate limit state (ULS) and serviceability limit state (SLS) are studied. The loads are calculated according to the Canadian Highway Bridge Design Code (CAN/CSA S6-14). Results confirm that full composite action between the aluminium deck and the steel girders can be achieved. Moreover, by following the recommendations of this study, it is possible to eliminate the sliding that may occur during the thermal loading of the beam at the serviceability limit state (SLS). This study also offers a solution to prevent the failure of the bolted connections following the combination of thermal and mechanical loads.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/30272 |
Date | 03 July 2018 |
Creators | Leclerc, Julien |
Contributors | Annan, Charles-Darwin, Fafard, Mario |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xxi, 290 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0436 seconds