Return to search

Time-of-Use-Aware Priority-Based Multi-Mode Online Charging Scheme for EV Charging Stations

Electric vehicle charging stations (EVCS) play a vital role in providing charging support to EV users. In order to facilitate users in terms of charging speed and price, two different charging modes (L2 and L3) are currently available at public charging stations. L3 mode provides quick charging with higher power, whereas L2 mode offers moderate charging speed with low power. The integration of an EVCS into the power grid requires coordinated charging strategies in order to reduce the electricity bill for a profitable operation. However, the effective utilization of the multi-mode charging strategy to serve the maximum number of EVs for a small charging station with limited charging capacity and spots is an open issue. To this end, we propose a priority-based online charging scheme, namely PBOS, which is based on real-time information and does not depend on future knowledge. The objective is to serve as many vehicles as possible in a day while fulfilling their charging requirements under a multi-mode EVCS setting and reducing the charging costs by utilizing the time-of-use pricing based demand response strategy. Extensive simulation is done while considering two different demand response strategies under various settings. The results show that the proposed algorithm can increase profit for the EVCS by up to 48\% with a 22\% lower rejection rate. In addition, it can serve EVs with a low battery charge, known as state of charge (SOC), up to 11\% higher than most of the other schemes and can save up to 81.75 minutes to attain the same SOC when compared with other schemes. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/14552
Date06 December 2022
CreatorsBin Anwar, Md Navid
ContributorsPan, Jianping
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAvailable to the World Wide Web

Page generated in 0.0016 seconds