Ruthenium polypyridyl complexes have long been studied due to their unique photophysical characteristics and their synthetic accessibility. We report here the use of new ruthenium polypyridyl’s in photodynamic chemotherapeutic and solar fuel applications. Nearly half of all chemotherapeutics administered today are derived from platinum-based drugs (platins) which lack specificity and can cause sever side-effects. Photodynamic chemotherapeutics (PDT) circumvent these issues utilizing light activation at the site of cancerous cells to generate a cytotoxic Ru(II) center and eventually trigger cellular apoptosis. The new PDT pro-drugs presented push their metal-to-ligand charge transfer (MLCT) light absorption out into the near-IR which is able to penetrate skin at greater depths than traditional PDT drugs. New Ru(II) hydrogen fuel evolution catalyst for use in dye-sensitized photoelectrosynthesis cells (DSPECs) based off of the extensively explored octahedral tridentate-bidentate coordination motif is also investigated. In particular, pendant bases are oriented toward the active site of the catalyst to increase catalytic rates and lower overpotentials. Preliminary density functional theory calculations show that strategic placement of the pendant amine on the bidentate ligand allows for productive interactions between the base and the active site of the catalyst to evolve hydrogen.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:asrf-1278 |
Date | 12 April 2019 |
Creators | Delsorbo, Carter A, McCullough, Annie B, Peiro'Vila, Pau, Pulliam, Lyndsey B, Rojas, Alyssa N, Sager, Kayla M, Ashford, Dennis L |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | Appalachian Student Research Forum |
Page generated in 0.0015 seconds