The aim of this investigation was to use hybrid constructed wetlands to treat the secondary effluents from NSYSU campus sewage treatment plant, which had high phosphate and ammonium nitogen and from a textile industrial wastewater treatment plant, which had high chemical oxygen demand(COD) . The purpose of this study is to design optimum operation, conditions and to select suitable types of filter media through optimum combinations of vertical flow (VF) and horizontal flow (HF) constructed wetland systems.
The flow regimes for vertical flow operation in this study include continuous flow with filled water, trickling filter type and batch type, while the flow types for horizontal flow operation include high water level and low water level effluents. The experimental of results showed that the best ammonium nitrogen removal efficiency was found in trickling filter type, which was because high oxygen was provided under this flow pattern creating a suitable condition for nitrification , especially in V3 column(39.09%), while the best denitrification effect was fonnd in low water level horizontal operation, especially in H2 bed(42.56%).
The experimental results of treating the Everest effluent from the wastewater treatment plant showed that the flow regime in V3 system had best removal of COD in batch type. In trickling filter and low water level type, the optimum hybrid of V3+H3 had the COD removal efficiency eqail to(33.3%)+(49.8%) respectirely .For the experimental results of tolerance of macrophyte, Hedycbium coronarium Koenig live well, but no significant removal efficiencies of nutrient was fund.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0213109-134154 |
Date | 13 February 2009 |
Creators | Chuang, Hsiao-hui |
Contributors | Wen-Chien Kuo, Lei Yang, Chia-Shun Yu |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0213109-134154 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0016 seconds